亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ZIP4 Increases Expression of Transcription Factor ZEB1 to Promote Integrin α3β1 Signaling and Inhibit Expression of the Gemcitabine Transporter ENT1 in Pancreatic Cancer Cells

吉西他滨 胰腺癌 转录因子 细胞生物学 癌症研究 化学 运输机 信号转导 生物 医学 癌症 内科学 基因 生物化学
作者
Mingyang Liu,Yu‐Qing Zhang,Jingxuan Yang,Xiaobo Cui,Zhijun Zhou,Hanxiang Zhan,Kai Ding,Xiang Tian,Zhibo Yang,Kar‐Ming Fung,Barish H. Edil,Russell G. Postier,Michael S. Bronze,Martín E. Fernández-Zapico,Marc P. Stemmler,Thomas Brabletz,Yiping Li,Courtney W. Houchen,Min Li
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:158 (3): 679-692.e1 被引量:117
标识
DOI:10.1053/j.gastro.2019.10.038
摘要

Background & AimsPancreatic tumors undergo rapid growth and progression, become resistant to chemotherapy, and recur after surgery. We studied the functions of the solute carrier family 39 member 4 (SLC39A4, also called ZIP4), which regulates concentrations of intracellular zinc and is increased in pancreatic cancer cells, in cell lines and mice.MethodsWe obtained 93 pancreatic cancer specimens (tumor and adjacent nontumor tissues) from patients who underwent surgery and gemcitabine chemotherapy and analyzed them by immunohistochemistry. ZIP4 and/or ITGA3 or ITGB1 were overexpressed or knocked down with short hairpin RNAs in AsPC-1 and MIA PaCa-2 pancreatic cancer cells lines, and in pancreatic cells from KPC and KPC-ZEB1–knockout mice, and pancreatic spheroids were established; cells and spheroids were analyzed by immunoblots, reverse transcription polymerase chain reaction, and liquid chromatography tandem mass spectrometry. We studied transcriptional regulation of ZEB1, ITGA3, ITGB1, JNK, and ENT1 by ZIP4 using chromatin precipitation and luciferase reporter assays. Nude mice were given injections of genetically manipulated AsPC-1 and MIA PaCa-2 cells, and growth of xenograft tumors and metastases was measured.ResultsIn pancreatic cancer specimens from patients, increased levels of ZIP4 were associated with shorter survival times. MIA PaCa-2 cells that overexpressed ZIP4 had increased resistance to gemcitabine, 5-fluorouracil, and cisplatin, whereas AsPC-1 cells with ZIP4 knockdown had increased sensitivity to these drugs. In mice, xenograft tumors grown from AsPC-1 cells with ZIP4 knockdown were smaller and more sensitive to gemcitabine. ZIP4 overexpression significantly reduced accumulation of gemcitabine in pancreatic cancer cells, increased growth of xenograft tumors in mice, and increased expression of the integrin subunits ITGA3 and ITGB1; expression levels of ITGA3 and ITGB1 were reduced in cells with ZIP4 knockdown. Pancreatic cancer cells with ITGA3 or ITGB1 knockdown had reduced proliferation and formed smaller tumors in mice, despite overexpression of ZIP4; spheroids established from these cells had increased sensitivity to gemcitabine. We found ZIP4 to activate STAT3 to induce expression of ZEB1, which induced expression of ITGA3 and ITGB1 in KPC cells. Increased ITGA3 and ITGB1 expression and subsequent integrin α3β1 signaling, via c-Jun-N-terminal kinase (JNK), inhibited expression of the gemcitabine transporter ENT1, which reduced gemcitabine uptake by pancreatic cancer cells. ZEB1-knockdown cells had increased sensitivity to gemcitabine.ConclusionsIn studies of pancreatic cancer cell lines and mice, we found that ZIP4 increases expression of the transcription factor ZEB1, which activates expression of ITGA3 and ITGB1. The subsequent increase in integrin α3β1 signaling, via JNK, inhibits expression of the gemcitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway might help mediate resistance of pancreatic tumors to chemotherapeutic agents. Pancreatic tumors undergo rapid growth and progression, become resistant to chemotherapy, and recur after surgery. We studied the functions of the solute carrier family 39 member 4 (SLC39A4, also called ZIP4), which regulates concentrations of intracellular zinc and is increased in pancreatic cancer cells, in cell lines and mice. We obtained 93 pancreatic cancer specimens (tumor and adjacent nontumor tissues) from patients who underwent surgery and gemcitabine chemotherapy and analyzed them by immunohistochemistry. ZIP4 and/or ITGA3 or ITGB1 were overexpressed or knocked down with short hairpin RNAs in AsPC-1 and MIA PaCa-2 pancreatic cancer cells lines, and in pancreatic cells from KPC and KPC-ZEB1–knockout mice, and pancreatic spheroids were established; cells and spheroids were analyzed by immunoblots, reverse transcription polymerase chain reaction, and liquid chromatography tandem mass spectrometry. We studied transcriptional regulation of ZEB1, ITGA3, ITGB1, JNK, and ENT1 by ZIP4 using chromatin precipitation and luciferase reporter assays. Nude mice were given injections of genetically manipulated AsPC-1 and MIA PaCa-2 cells, and growth of xenograft tumors and metastases was measured. In pancreatic cancer specimens from patients, increased levels of ZIP4 were associated with shorter survival times. MIA PaCa-2 cells that overexpressed ZIP4 had increased resistance to gemcitabine, 5-fluorouracil, and cisplatin, whereas AsPC-1 cells with ZIP4 knockdown had increased sensitivity to these drugs. In mice, xenograft tumors grown from AsPC-1 cells with ZIP4 knockdown were smaller and more sensitive to gemcitabine. ZIP4 overexpression significantly reduced accumulation of gemcitabine in pancreatic cancer cells, increased growth of xenograft tumors in mice, and increased expression of the integrin subunits ITGA3 and ITGB1; expression levels of ITGA3 and ITGB1 were reduced in cells with ZIP4 knockdown. Pancreatic cancer cells with ITGA3 or ITGB1 knockdown had reduced proliferation and formed smaller tumors in mice, despite overexpression of ZIP4; spheroids established from these cells had increased sensitivity to gemcitabine. We found ZIP4 to activate STAT3 to induce expression of ZEB1, which induced expression of ITGA3 and ITGB1 in KPC cells. Increased ITGA3 and ITGB1 expression and subsequent integrin α3β1 signaling, via c-Jun-N-terminal kinase (JNK), inhibited expression of the gemcitabine transporter ENT1, which reduced gemcitabine uptake by pancreatic cancer cells. ZEB1-knockdown cells had increased sensitivity to gemcitabine. In studies of pancreatic cancer cell lines and mice, we found that ZIP4 increases expression of the transcription factor ZEB1, which activates expression of ITGA3 and ITGB1. The subsequent increase in integrin α3β1 signaling, via JNK, inhibits expression of the gemcitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway might help mediate resistance of pancreatic tumors to chemotherapeutic agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
52秒前
赘婿应助科研通管家采纳,获得10
52秒前
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
加绒完成签到,获得积分10
1分钟前
Hvginn完成签到,获得积分10
2分钟前
星际舟完成签到,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
3分钟前
PhD_Lee73完成签到 ,获得积分0
3分钟前
3分钟前
草木完成签到 ,获得积分20
4分钟前
4分钟前
Lucas应助正直听白采纳,获得10
4分钟前
4分钟前
4分钟前
正直听白发布了新的文献求助10
4分钟前
正直听白完成签到,获得积分10
5分钟前
穿花雪完成签到,获得积分10
5分钟前
tianzml0应助穿花雪采纳,获得30
5分钟前
5分钟前
Shuo完成签到,获得积分10
5分钟前
馆长举报曼凡求助涉嫌违规
6分钟前
HS完成签到,获得积分10
7分钟前
豆豆完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI5应助herococa采纳,获得20
8分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
9分钟前
华仔应助超级飞侠采纳,获得10
9分钟前
9分钟前
ANTianxu完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
99hz关注了科研通微信公众号
10分钟前
10分钟前
99hz发布了新的文献求助10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568812
求助须知:如何正确求助?哪些是违规求助? 3991266
关于积分的说明 12355576
捐赠科研通 3663334
什么是DOI,文献DOI怎么找? 2018855
邀请新用户注册赠送积分活动 1053263
科研通“疑难数据库(出版商)”最低求助积分说明 940862