Brain MRI analysis using a deep learning based evolutionary approach

计算机科学 卷积神经网络 判别式 人工智能 模式识别(心理学) 可视化 集合(抽象数据类型) 神经影像学 深度学习 机器学习 神经科学 生物 程序设计语言
作者
Hossein Shahamat,Mohammad Saniee Abadeh
出处
期刊:Neural Networks [Elsevier BV]
卷期号:126: 218-234 被引量:79
标识
DOI:10.1016/j.neunet.2020.03.017
摘要

Convolutional neural network (CNN) models have recently demonstrated impressive performance in medical image analysis. However, there is no clear understanding of why they perform so well, or what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based brain masking (GABM) method is proposed as a visualization technique that provides new insights into the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step, a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA) is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features for brain disease classification. Experimental results show that besides the model interpretability, the proposed GABM method has increased final performance of the classification model in some cases with respect to model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
葛藟萦藤发布了新的文献求助10
2秒前
狂野砖头发布了新的文献求助10
2秒前
lilyliu完成签到,获得积分10
4秒前
祁祁发布了新的文献求助30
5秒前
cv完成签到,获得积分20
5秒前
5秒前
齐嘉懿发布了新的文献求助10
5秒前
哈哈哈发布了新的文献求助10
6秒前
6秒前
十二完成签到,获得积分10
6秒前
7秒前
7秒前
受伤的小松鼠完成签到,获得积分10
8秒前
joey完成签到,获得积分10
8秒前
Hugo完成签到,获得积分10
9秒前
CodeCraft应助丁真先生采纳,获得10
10秒前
吴谷杂粮发布了新的文献求助10
10秒前
11秒前
不安乐菱发布了新的文献求助30
11秒前
11秒前
12秒前
科研通AI5应助细腻问柳采纳,获得10
13秒前
15秒前
cv关闭了cv文献求助
15秒前
16秒前
16秒前
18秒前
18秒前
江江发布了新的文献求助10
19秒前
繁荣的哲瀚完成签到,获得积分10
19秒前
CipherSage应助momo采纳,获得10
19秒前
丘比特应助鹿其临采纳,获得10
19秒前
甜甜芾发布了新的文献求助30
21秒前
肉肉发布了新的文献求助10
21秒前
21秒前
情怀应助meimei采纳,获得10
21秒前
李末发布了新的文献求助10
23秒前
领导范儿应助007采纳,获得10
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056