Predicting postmortem interval based on microbial community sequences and machine learning algorithms

生物 微生物种群生物学 算法 区间(图论) 计算生物学 计算机科学 细菌 数学 遗传学 组合数学
作者
Ruina Liu,Yuexi Gu,Mingwang Shen,Huan Li,Kai Zhang,Qi Wang,Xin Wei,Haohui Zhang,Di Wu,Kai Yu,Wumin Cai,Gongji Wang,Siruo Zhang,Qinru Sun,Ping Huang,Zhenyuan Wang
出处
期刊:Environmental Microbiology [Wiley]
卷期号:22 (6): 2273-2291 被引量:88
标识
DOI:10.1111/1462-2920.15000
摘要

Summary Microbes play an essential role in the decomposition process but were poorly understood in their succession and behaviour. Previous researches have shown that microbes show predictable behaviour that starts at death and changes during the decomposition process. Research of such behaviour enhances the understanding of decomposition and benefits estimating the postmortem interval (PMI) in forensic investigations, which is critical but faces multiple challenges. In this study, we combined microbial community characterization, microbiome sequencing from different organs (i.e. brain, heart and cecum) and machine learning algorithms [random forest (RF), support vector machine (SVM) and artificial neural network (ANN)] to investigate microbial succession pattern during corpse decomposition and estimate PMI in a mouse corpse system. Microbial communities exhibited significant differences between the death point and advanced decay stages. Enterococcus faecalis , Anaerosalibacter bizertensis , Lactobacillus reuteri , and so forth were identified as the most informative species in the decomposition process. Furthermore, the ANN model combined with the postmortem microbial data set from the cecum, which was the best combination among all candidates, yielded a mean absolute error of 1.5 ± 0.8 h within 24‐h decomposition and 14.5 ± 4.4 h within 15‐day decomposition. This integrated model can serve as a reliable and accurate technology in PMI estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
Hello应助AHR采纳,获得10
2秒前
打打应助AHR采纳,获得10
2秒前
烟花应助AHR采纳,获得10
2秒前
深情安青应助AHR采纳,获得10
2秒前
科研通AI2S应助AHR采纳,获得10
2秒前
青皮橘子应助AHR采纳,获得10
2秒前
顾矜应助AHR采纳,获得10
2秒前
3秒前
memory发布了新的文献求助10
3秒前
烟雾镜发布了新的文献求助10
3秒前
自由可兰发布了新的文献求助20
4秒前
浮游应助zhang采纳,获得10
4秒前
5秒前
5秒前
5秒前
科研通AI2S应助余亮采纳,获得10
7秒前
fox2shj完成签到,获得积分10
8秒前
含蓄以云完成签到,获得积分10
8秒前
风趣问蕊发布了新的文献求助10
8秒前
浮游应助AHR采纳,获得10
9秒前
bkagyin应助AHR采纳,获得10
9秒前
yanxi应助AHR采纳,获得10
9秒前
晓雯应助AHR采纳,获得10
9秒前
英姑应助AHR采纳,获得10
9秒前
Ava应助AHR采纳,获得10
10秒前
共享精神应助AHR采纳,获得10
10秒前
Orange应助AHR采纳,获得10
10秒前
左耳钉应助AHR采纳,获得10
10秒前
小二郎应助AHR采纳,获得10
10秒前
潘怡瑶发布了新的文献求助10
10秒前
Lucas应助Miracle采纳,获得10
10秒前
11秒前
科研通AI6应助memory采纳,获得10
12秒前
以冬应助张张采纳,获得50
14秒前
小淘淘发布了新的文献求助10
14秒前
16秒前
烂漫如容发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782