网络空间
恶意软件
计算机科学
主题(文档)
概念漂移
人工智能
机器学习
计算机安全
互联网
万维网
数据流挖掘
作者
Fabrício Ceschin,Felipe Pinagé,Marcos Castilho,David Menotti,Luiz S. Oliveira,André Grégio
出处
期刊:IEEE Security & Privacy
[Institute of Electrical and Electronics Engineers]
日期:2018-11-01
卷期号:16 (6): 31-41
被引量:37
标识
DOI:10.1109/msec.2018.2875369
摘要
Using a dataset containing about 50,000 samples from Brazilian cyberspace, we show that relying solely on conventional machine-learning systems without taking into account the change of the subject's concept decreases the performance of classification, emphasizing the need to update the decision model immediately after concept drift occurs.
科研通智能强力驱动
Strongly Powered by AbleSci AI