A hybrid ensemble method for improved prediction of slope stability

人工智能 接收机工作特性 分类器(UML) 超参数优化 计算机科学 超参数 人工神经网络 支持向量机 集成学习 机器学习 模式识别(心理学) 数学
作者
Chongchong Qi,Xiaolin Tang
出处
期刊:International Journal for Numerical and Analytical Methods in Geomechanics [Wiley]
卷期号:42 (15): 1823-1839 被引量:60
标识
DOI:10.1002/nag.2834
摘要

Summary Accurate prediction of slope stability is a significant issue in geomechanics with many artificial intelligence (AI) techniques being utilised. However, the application of AI has not reached its full potential because of the lack of more robust algorithms. In this paper, we proposed a hybrid ensemble method for the improved prediction of slope stability using classifier ensembles and genetic algorithm. Gaussian process classification, quadratic discriminant analysis, support vector machine, artificial neural networks, adaptive boosted decision trees, and k ‐nearest neighbours were chosen to be individual AI techniques, and the weighted majority voting was used as the combination method. Validation method was chosen to be the 10‐fold cross‐validation, and performance measures were selected to be the accuracy, the receiver operating characteristic curve, and the area under the receiver operating characteristic curve (AUC). Grid search and genetic algorithm were used for the hyperparameter tuning and weight tuning respectively. The results show that the proposed hybrid ensemble method has great potential in improving the prediction of slope stability. Compared with individual classifiers, the optimum ensemble classifier achieved the highest AUC value (0.943) and the highest accuracy (0.902) on the testing set, denoting that the predictive performance has been improved. The optimum ensemble classifier with the Youden's cut‐off was recommended for slope stability prediction with respect to the AUC value, the accuracy, the true positive rate, and the true negative rate. This research indicates that the use of the classifier ensembles, rather than the search for the ideal individual classifiers, might help for the slope stability prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Njzs完成签到 ,获得积分10
2秒前
4秒前
李爱国应助syq采纳,获得10
5秒前
5秒前
科研通AI6应助魏伯安采纳,获得10
7秒前
情怀应助飞快的翅膀采纳,获得10
7秒前
7秒前
洛希发布了新的文献求助10
9秒前
科研通AI2S应助朝颜采纳,获得10
10秒前
百浪多息完成签到,获得积分10
10秒前
花生仔发布了新的文献求助10
11秒前
mujinluo应助大白采纳,获得20
11秒前
悦耳的从筠完成签到 ,获得积分20
11秒前
zkf完成签到,获得积分10
11秒前
Akim应助BYN采纳,获得10
11秒前
11秒前
bkagyin应助overlood采纳,获得10
11秒前
12秒前
14秒前
16秒前
彭于晏应助MXH采纳,获得10
16秒前
17秒前
张雯思发布了新的文献求助10
17秒前
彭于晏应助su采纳,获得10
17秒前
17秒前
隐形溪流完成签到,获得积分10
18秒前
今后应助萤火虫采纳,获得10
19秒前
nuoyefenfei完成签到,获得积分10
19秒前
故事与她发布了新的文献求助10
20秒前
Olivia完成签到 ,获得积分10
21秒前
斋藤飞鸟发布了新的文献求助30
22秒前
熊啊卿发布了新的文献求助10
22秒前
BYN发布了新的文献求助10
22秒前
在水一方应助微垣采纳,获得10
22秒前
程秋实发布了新的文献求助10
23秒前
我是老大应助隐形溪流采纳,获得10
24秒前
25秒前
GeneYang完成签到,获得积分10
27秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4494240
求助须知:如何正确求助?哪些是违规求助? 3947088
关于积分的说明 12238358
捐赠科研通 3604447
什么是DOI,文献DOI怎么找? 1982508
邀请新用户注册赠送积分活动 1019185
科研通“疑难数据库(出版商)”最低求助积分说明 911742