TFEB
自噬
衰老
细胞生物学
细胞凋亡
转染
化学
程序性细胞死亡
免疫印迹
活性氧
生物
分子生物学
生物化学
基因
作者
Gang Zheng,Zongyou Pan,Yu Zhan,Qian Tang,Fanghong Zheng,Yifei Zhou,Yaosen Wu,Yulong Zhou,Deheng Chen,Jiaoxiang Chen,Xiangyang Wang,Weiyang Gao,Huazi Xu,Naifeng Tian,Xiaolei Zhang
标识
DOI:10.1016/j.joca.2018.10.011
摘要
Summary
Objective
Excessive apoptosis and senescence of nucleus pulposus (NP) cells are major pathological changes in intervertebral disc degeneration (IVDD) development; previous studies demonstrated pharmacologically or genetically stimulation of autophagy may inhibit apoptosis and senescence in NP cells. Transcription factor EB (TFEB) is a master regulator of autophagic flux via initiating autophagy-related genes and lysosomal biogenesis. This study was performed to confirm whether TFEB was involved in IVDD development and its mechanism. Methods
TFEB activity was detected in NP tissues in puncture-induced rat IVDD model by immunofluorescence as well as in tert-Butyl hydroperoxide (TBHP), the reactive oxygen species (ROS) donor to induce oxidative stress, treated NP cells by western blot. After TFEB overexpression in NP cells with lentivirus transfection, autophagic flux, apoptosis and senescence percentage were assessed. In in vivo study, the lentivirus-normal control (LV-NC) or lentivirus-TFEB (LV-TFEB) were injected into the center space of the NP tissue, after 4 or 8 weeks, Magnetic resonance imaging (MRI), X ray, Hematoxylin-Eosin (HE) and Safranin O staining were used to evaluate IVDD grades. Results
The nuclear localization of TFEB declined in degenerated rat NP tissue as well as in TBHP treated NP cells. Applying lentivirus to transfect NP cells, TFEB overexpression restored the TBHP-induced autophagic flux blockage and protected NP cells against apoptosis and senescence; these protections of TFEB are diminished by chloroquine-medicated autophagy inhibition. Furthermore, TFEB overexpression ameliorates the puncture-induced IVDD development in rats. Conclusions
Experimental IVDD inhibited the TFEB activity. TFEB overexpression suppressed TBHP-induced apoptosis and senescence via autophagic flux stimulation in NP cell and alleviates puncture-induced IVDD development in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI