Tea types classification with data fusion of UV–Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis

二次分类器 线性判别分析 支持向量机 人工智能 模式识别(心理学) 主成分分析 近红外光谱 传感器融合 融合 荧光光谱法 数学 化学 荧光 生物系统 计算机科学 物理 哲学 生物 量子力学 语言学
作者
Anna Dankowska,Wojciech Kowalewski
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:211: 195-202 被引量:97
标识
DOI:10.1016/j.saa.2018.11.063
摘要

The potential of selected spectroscopic methods - UV-Vis, synchronous fluorescence and NIR as well a data fusion of the measurements by these methods - for the classification of tea samples with respect to the production process was examined. Four classification methods - Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Regularized Discriminant Analysis (RDA) and Support Vector Machine (SVM) - were used to analyze spectroscopic data. PCA analysis was applied prior to classification methods to reduce multidimensionality of the data. Classification error rates were used to evaluate the performance of these methods in the classification of tea samples. The results indicate that black, green, white, yellow, dark, and oolong teas, which are produced by different methods, are characterized by different UV-Vis, fluorescence, and NIR spectra. The lowest error rates in the calibration and validation data sets for individual spectroscopies and data fusion models were obtained with the use of the QDA and SVM methods, and did not exceed 3.3% and 0.0%, respectively. The lowest classification error rates in the validation data sets for individual spectroscopies were obtained with the use of RDA (12,8%), SVM (6,7%), and QDA (2,7%), for the UV-Vis, SF, and NIR spectroscopies, respectively. NIR spectroscopy combined with QDA outperformed other individual spectroscopic methods. Very low classification errors in the validation data sets - below 3% - were obtained for all the data fusion data sets (SF + UV-Vis, SF + NIR, NIR + UV-Vis combined with the SVM method). The results show that UV-Vis, fluorescence and near infrared spectroscopies may complement each other, giving lower errors for the classification of tea types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jieee完成签到,获得积分20
1秒前
meimhuang完成签到,获得积分10
1秒前
核桃应助失眠火龙果采纳,获得10
1秒前
淡然青筠完成签到,获得积分10
1秒前
bofu发布了新的文献求助10
1秒前
踏实的烙完成签到,获得积分10
2秒前
2秒前
小鱼儿完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助秦亦云采纳,获得10
2秒前
3秒前
好好学习的小学生完成签到,获得积分10
4秒前
无花果应助Phantasyice采纳,获得10
5秒前
mm255完成签到,获得积分10
5秒前
6秒前
6秒前
没有答案发布了新的文献求助10
6秒前
meimhuang发布了新的文献求助10
6秒前
汉德萌多林完成签到,获得积分10
7秒前
7秒前
bofu发布了新的文献求助30
7秒前
7秒前
7秒前
guojinyu完成签到,获得积分10
7秒前
爱弥儿完成签到,获得积分20
8秒前
果嘿嘿完成签到,获得积分10
8秒前
8秒前
pcr163应助mm255采纳,获得100
10秒前
小蘑菇应助没有答案采纳,获得10
10秒前
诚心八宝粥完成签到,获得积分10
11秒前
cyr发布了新的文献求助10
11秒前
赘婿应助东方一斩采纳,获得10
11秒前
纯真小伙发布了新的文献求助10
11秒前
12秒前
12秒前
加油加油发布了新的文献求助10
13秒前
bofu发布了新的文献求助10
13秒前
悦耳的妙竹完成签到,获得积分10
14秒前
汉堡包应助赵22222222采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789277
求助须知:如何正确求助?哪些是违规求助? 3334313
关于积分的说明 10269025
捐赠科研通 3050734
什么是DOI,文献DOI怎么找? 1674119
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760692