数学
奇点
类型(生物学)
维数(图论)
数学分析
分数拉普拉斯
能量(信号处理)
弱解
拉普拉斯算子
纯数学
统计
生态学
生物
作者
Trevor M. Leslie,Roman Shvydkoy
摘要
When a Leray--Hopf weak solution to the NSE has a singularity set $S$ of dimension $d$ less than $3$---for example, a suitable weak solution---we find a family of new $L^q L^p$ conditions that guarantee validity of the energy equality. Our conditions surpass the classical Lions--Ladyženskaja $L^4 L^4$ result in the case $d<1$. Additionally, we establish energy equality in certain cases of Type-I blow up. The results are also extended to the NSE with fractional power of the Laplacian below $1$.
科研通智能强力驱动
Strongly Powered by AbleSci AI