已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

计算机科学 聚类分析 机器学习 术语 人工智能 领域(数学) 随机森林 主题模型 统计推断 数据科学 数学 统计 语言学 哲学 纯数学
作者
Trevor Hastie,Robert Tibshirani,Jerome H. Friedman
链接
摘要

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANNAN完成签到,获得积分10
3秒前
晏鄢发布了新的文献求助10
4秒前
4秒前
jayyong完成签到,获得积分10
5秒前
Nnnnnkw完成签到 ,获得积分10
7秒前
hygge完成签到,获得积分10
7秒前
肉胖胖肉完成签到,获得积分10
8秒前
pathway完成签到 ,获得积分10
12秒前
rrrrrrry发布了新的文献求助20
12秒前
852应助Xiaoxiao采纳,获得30
13秒前
梨花酒完成签到,获得积分10
13秒前
清爽的诗云完成签到 ,获得积分10
14秒前
乐观的小松鼠完成签到,获得积分10
14秒前
li完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
sinba完成签到,获得积分10
17秒前
晏鄢完成签到,获得积分10
18秒前
19秒前
风清扬应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
若雨凌风应助科研通管家采纳,获得20
19秒前
Kashing完成签到,获得积分10
20秒前
张奶昔完成签到,获得积分10
22秒前
puppy完成签到 ,获得积分10
22秒前
亚高山暗针叶林完成签到 ,获得积分10
23秒前
五十一完成签到 ,获得积分10
23秒前
1218完成签到 ,获得积分10
23秒前
shaylie完成签到 ,获得积分10
24秒前
25秒前
五本笔记完成签到 ,获得积分10
27秒前
Duan完成签到 ,获得积分10
27秒前
Ava应助funnyzpc采纳,获得10
30秒前
31秒前
小困包進入喵次元完成签到,获得积分10
33秒前
小姚姚完成签到,获得积分10
35秒前
36秒前
莉莉斯完成签到 ,获得积分10
37秒前
38秒前
小枣完成签到 ,获得积分10
39秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885666
求助须知:如何正确求助?哪些是违规求助? 3427797
关于积分的说明 10756853
捐赠科研通 3152675
什么是DOI,文献DOI怎么找? 1740530
邀请新用户注册赠送积分活动 840252
科研通“疑难数据库(出版商)”最低求助积分说明 785254