Abstract Breast cancer is the most frequently diagnosed cancer, with metastasis accounting for the majority of cancer-related deaths. The mechanisms of early-stage breast cancer metastasis to regional immune sites like lymph nodes remain elusive. Here, we performed an in-depth proteomic and phosphoproteomic analysis of a substantial series of breast cancer samples, alongside genomic and transcriptomic evaluations. This cohort encompasses 195 specimens: 65 primary breast tumors, their corresponding normal tissues, and metastatic axillary lymph nodes. We offer an overview of the molecular alterations at the transcriptomic, proteomic, and phosphoproteomic levels during lymph node metastasis. Notably, the findings indicate that regional lymph node metastasis is primarily influenced by proteomic and phosphoproteomic alterations, rather than genomic or transcriptomic changes. We found the ANGPTL4 and HMGB1 could serve as the biomarker of lymph node metastasis. Data analysis and cell experiments involving silencing of the alternative splicing factor HNRNPU demonstrated that alternative splicing plays a significant role in modulating protein expression, phosphorylation profiles and cell proliferation. The key phosphorylation sites, including MARCKSL1-S104 and FKBP15-S320, as well as the upstream kinase PRKCB, were identified as playing crucial roles in breast cancer lymph node metastasis. Targeted intervention of the kinase PRKCB resulted in effectively suppressing the proliferation and metastasis of breast cancer tumor cells. Immune profiling analysis and experimental validation of breast cancer cell cocultured with CD8+ T cell reveals correlations between phosphorylation of MARCKSL1-S104 and FKBP15-S320 with immune checkpoint PD-L1 expression, and their impact on tumor cell apoptosis, suggesting a potential mechanism of immune evasion in metastasis. This study systematically characterizes the molecular landscape and features of primary breast tumors and their matched metastatic lymph nodes. These insights enhance our understanding of early-stage breast cancer metastasis and may pave the way for improved diagnostic tools and targeted therapeutic strategies.