钙钛矿(结构)
材料科学
偶极子
单层
光电子学
光伏系统
能量转换效率
串联
电荷(物理)
分子
基质(水族馆)
力矩(物理)
溴
方向(向量空间)
带隙
薄膜
化学物理
沉积(地质)
开路电压
电压
纳米技术
太阳能电池
衍射
混合太阳能电池
电子能带结构
跃迁偶极矩
作者
Jinhua Wang,Yixuan Hao,He Zhu,Wei Lü,Mingyu Li,Jun Fang,Qisen Zhou,Sanwan Liu,Yong Cai,Tianyin Miao,Zhengtian Tan,Wenguang Liu,Xuxin Kang,Longbin Qiu,Zhaoqin Chu,Wei Chen,Zonghao Liu
标识
DOI:10.1002/adma.202523338
摘要
ABSTRACT Self‐assembled monolayers (SAMs) have shown considerable promise as hole‐transport layers (HTLs) in wide‐bandgap (WBG) perovskite solar cells (PSCs) and tandems. However, conventional SAM materials often face limitations such as substantial energy‐level misalignment and inefficient charge transport, which limit device performance. Here, we designed a carbazole‐based SAM molecule, 4‐(8‐bromo‐11H‐benzo[a]carbazol‐11‐yl) butyl) phosphonic acid (Br‐4PhCz), through a combined strategy of asymmetric π‐extension and terminal bromine substitution. The resulting Br‐4PhCz exhibits a large dipole moment, adopts a face‐on molecular orientation with uniform substrate coverage, and demonstrates superior self‐assembly quality. As a SAM‐based HTL, it enables the deposition of high‐quality WBG perovskite films over large areas, reinforces a robust buried interface, minimizes energy‐level misalignment, suppresses interfacial non‐radiative recombination, and enhances hole extraction. By integrating Br‐4PhCz, we obtained an impressive open‐circuit voltage of 1.36 V in WBG PSCs with a bandgap of 1.77 eV. Using these high‐performance WBG subcells, we fabricated all‐perovskite tandem devices that deliver maximum power conversion efficiencies of 29.35% (certified 28.98%) on 0.05 cm 2 and 28.83% (certified 28.49%) on 1 cm 2 devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI