Electrospinning: A fascinating fiber fabrication technique

静电纺丝 纳米纤维 材料科学 纳米技术 纳米尺度 制作 纤维 聚合物 多孔性 复合材料 医学 病理 替代医学
作者
Nandana Bhardwaj,Subhas C. Kundu
出处
期刊:Biotechnology Advances [Elsevier]
卷期号:28 (3): 325-347 被引量:4743
标识
DOI:10.1016/j.biotechadv.2010.01.004
摘要

With the emergence of nanotechnology, researchers become more interested in studying the unique properties of nanoscale materials. Electrospinning, an electrostatic fiber fabrication technique has evinced more interest and attention in recent years due to its versatility and potential for applications in diverse fields. The notable applications include in tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. The nanoscale fibers are generated by the application of strong electric field on polymer solution or melt. The non-wovens nanofibrous mats produced by this technique mimics extracellular matrix components much closely as compared to the conventional techniques. The sub-micron range spun fibers produced by this process, offer various advantages like high surface area to volume ratio, tunable porosity and the ability to manipulate nanofiber composition in order to get desired properties and function. Over the years, more than 200 polymers have been electropun for various applications and the number is still increasing gradually with time. With these in perspectives, we aim to present in this review, an overview of the electrospinning technique with its promising advantages and potential applications. We have discussed the electrospinning theory, spinnable polymers, parameters (solution and processing), which significantly affect the fiber morphology, solvent properties and melt electrospinning (alternative to solution electrospinning). Finally, we have focused on varied applications of electrospun fibers in different fields and concluded with the future prospects of this efficient technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangsouth发布了新的文献求助10
1秒前
王姝慧发布了新的文献求助10
1秒前
李健应助pcg采纳,获得100
2秒前
怎么忘了完成签到,获得积分10
2秒前
慕青应助chao采纳,获得10
2秒前
共享精神应助王佳豪采纳,获得10
2秒前
爆米花应助zhoushixian采纳,获得10
2秒前
lilichen_发布了新的文献求助10
3秒前
与yu完成签到,获得积分10
3秒前
iNk应助怕黑犀牛采纳,获得20
3秒前
3秒前
霜shuang发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
11111112222发布了新的文献求助10
6秒前
Akim应助小沈采纳,获得10
6秒前
大个应助Nimeide采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
chao完成签到,获得积分10
8秒前
ZX801发布了新的文献求助10
9秒前
liu完成签到,获得积分10
9秒前
与yu发布了新的文献求助10
10秒前
nijingwen完成签到,获得积分10
10秒前
10秒前
坚定白卉发布了新的文献求助10
10秒前
10秒前
rsq完成签到,获得积分10
11秒前
13秒前
荔枝罐头发布了新的文献求助10
13秒前
liu发布了新的文献求助10
14秒前
Chao123_完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
CY关闭了CY文献求助
15秒前
15秒前
万能图书馆应助冰山未闯采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663244
求助须知:如何正确求助?哪些是违规求助? 4848011
关于积分的说明 15103155
捐赠科研通 4821513
什么是DOI,文献DOI怎么找? 2580786
邀请新用户注册赠送积分活动 1535013
关于科研通互助平台的介绍 1493343