富勒烯
碳纳米管
流出物
纳米-
环境化学
材料科学
纳米材料
纳米技术
污水
生态毒性
环境科学
化学
环境工程
复合材料
有机化学
毒性
作者
Fadri Gottschalk,Tobias Sonderer,Roland W. Scholz,Bernd Nowack
摘要
Engineered nanomaterials (ENM) are already used in many products and consequently released into environmental compartments. In this study, we calculated predicted environmental concentrations (PEC) based on a probabilistic material flow analysis from a life-cycle perspective of ENM-containing products. We modeled nano-TiO2, nano-ZnO, nano-Ag, carbon nanotubes (CNT), and fullerenes for the U.S., Europe and Switzerland. The environmental concentrations were calculated as probabilistic density functions and were compared to data from ecotoxicological studies. The simulated modes (most frequent values) range from 0.003 ng L−1 (fullerenes) to 21 ng L−1 (nano-TiO2) for surface waters and from 4 ng L−1 (fullerenes) to 4 μg L−1 (nano-TiO2) for sewage treatment effluents. For Europe and the U.S., the annual increase of ENMs on sludge-treated soil ranges from 1 ng kg−1 for fullerenes to 89 μg kg−1 for nano-TiO2. The results of this study indicate that risks to aquatic organisms may currently emanate from nano-Ag, nano-TiO2, and nano-ZnO in sewage treatment effluents for all considered regions and for nano-Ag in surface waters. For the other environmental compartments for which ecotoxicological data were available, no risks to organisms are presently expected.
科研通智能强力驱动
Strongly Powered by AbleSci AI