碳化硅
材料科学
工程物理
纳米技术
纳米尺度
数码产品
半导体
宽禁带半导体
兴奋剂
电子迁移率
光电子学
电气工程
工程类
冶金
作者
Fabrizio Roccaforte,Filippo Giannazzo,V. Raineri
标识
DOI:10.1088/0022-3727/43/22/223001
摘要
Wide bandgap semiconductors promise devices with performances not achievable using silicon technology. Among them, silicon carbide (SiC) is considered the top-notch material for a new generation of power electronic devices, ensuring the improved energy efficiency required in modern society. In spite of the significant progress achieved in the last decade in the material quality, there are still several scientific open issues related to the basic transport properties at SiC interfaces and ion-doped regions that can affect the devices' performances, keeping them still far from their theoretical limits. Hence, significant efforts in fundamental research at the nanoscale have become mandatory to better understand the carrier transport phenomena, both at surfaces and interfaces. In this paper, the most recent experiences on nanoscale transport properties will be addressed, reviewing the relevant key points for the basic devices' building blocks. The selected topics include the major concerns related to the electronic transport at metal/SiC interfaces, to the carrier concentration and mobility in ion-doped regions and to channel mobility in metal/oxide/SiC systems. Some aspects related to interfaces between different SiC polytypes are also presented. All these issues will be discussed considering the current status and the drawbacks of SiC devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI