Collaborative filtering with temporal dynamics

计算机科学 利用 协同过滤 推荐系统 人气 钥匙(锁) 动力学(音乐) 产品(数学) 期限(时间) 人工智能 机器学习 数据科学 社会心理学 物理 几何学 量子力学 计算机安全 数学 声学 心理学
作者
Yehuda Koren
标识
DOI:10.1145/1557019.1557072
摘要

Customer preferences for products are drifting over time. Product perception and popularity are constantly changing as new selection emerges. Similarly, customer inclinations are evolving, leading them to ever redefine their taste. Thus, modeling temporal dynamics should be a key when designing recommender systems or general customer preference models. However, this raises unique challenges. Within the eco-system intersecting multiple products and customers, many different characteristics are shifting simultaneously, while many of them influence each other and often those shifts are delicate and associated with a few data instances. This distinguishes the problem from concept drift explorations, where mostly a single concept is tracked. Classical time-window or instance-decay approaches cannot work, as they lose too much signal when discarding data instances. A more sensitive approach is required, which can make better distinctions between transient effects and long term patterns. The paradigm we offer is creating a model tracking the time changing behavior throughout the life span of the data. This allows us to exploit the relevant components of all data instances, while discarding only what is modeled as being irrelevant. Accordingly, we revamp two leading collaborative filtering recommendation approaches. Evaluation is made on a large movie rating dataset by Netflix. Results are encouraging and better than those previously reported on this dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
疯狂的安波完成签到,获得积分10
1秒前
科研通AI5应助melody6156采纳,获得100
2秒前
2秒前
2秒前
3秒前
搜集达人应助slowride采纳,获得10
3秒前
3秒前
充电宝应助lulu采纳,获得10
3秒前
英姑应助冷傲海蓝采纳,获得10
4秒前
4秒前
研友_LOaaVZ完成签到,获得积分10
4秒前
5秒前
袁气小笼包完成签到,获得积分10
5秒前
Ain完成签到,获得积分10
5秒前
5秒前
桐桐应助找北ing采纳,获得10
6秒前
7秒前
CipherSage应助aac采纳,获得10
7秒前
7秒前
huiwanfeifei发布了新的文献求助10
8秒前
飘逸访文完成签到,获得积分10
8秒前
9秒前
9秒前
Ava应助xiongyh10采纳,获得30
10秒前
10秒前
fe999完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
Sumeru发布了新的文献求助10
12秒前
无敌暴龙战士完成签到,获得积分10
12秒前
slowride完成签到,获得积分20
12秒前
12秒前
oZuri完成签到,获得积分10
13秒前
大模型应助juile采纳,获得10
13秒前
迷路的蛋挞完成签到,获得积分20
13秒前
无奈醉柳发布了新的文献求助10
13秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835634
求助须知:如何正确求助?哪些是违规求助? 3378015
关于积分的说明 10501548
捐赠科研通 3097632
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772245