癌症研究
树突状细胞
医学
T细胞
免疫学
抗原
趋化因子
免疫疗法
微熔池
免疫系统
作者
Wenqian Dong,Huafeng Zhang,Xiaonan Yin,Yuying Liu,Degao Chen,Xiaoyu Liang,Xun Jin,Jiadi Lv,Jingwei Ma,Ke Tang,Zhuowei Hu,F. Xiao‐Feng Qin,Bo Huang
出处
期刊:OncoImmunology
[Informa]
日期:2017-01-19
卷期号:6 (3): e1282589-e1282589
被引量:37
标识
DOI:10.1080/2162402x.2017.1282589
摘要
Exploiting gut mucosal immunity to design new antitumor vaccination strategy remains unexplored. Tumor cell-derived microparticles (T-MP) are natural biomaterials that are capable of delivering tumor antigens and innate signals to dendritic cells (DC) for tumor-specific T cell immunity. Here, we show that T-MPs by oral vaccination route effectively access and activate mucosal epithelium, leading to subsequent antitumor T cell responses. Oral vaccination of T-MPs generated potent inhibitory effect against the growth of B16 melanoma and CT26 colon cancer in mice, which required both T cell and DC activation. T-MPs, once entering intestinal lumen, were mainly taken up by ileac intestinal epithelial cells (IEC), where T-MPs activated NOD2 and its downstream MAPK and NF-κB, leading to chemokine releasing, including CCL2, from IECs to attract CD103+ CD11c+ DCs. Furthermore, ileac IECs could transcytose T-MPs to the basolateral site, where T-MPs were captured by those DCs for cross-presentation of loaded antigen contents. Elucidating these molecular and cellular mechanisms highlights T-MPs as a novel antitumor oral vaccination strategy with great potential of clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI