生物分子
高分子
核酸
分辨率(逻辑)
计算机科学
能量(信号处理)
计算生物学
功能(生物学)
纳米技术
化学
物理
生物
材料科学
人工智能
生物化学
量子力学
进化生物学
作者
Rebecca F. Alford,Andrew Leaver‐Fay,Jeliazko R. Jeliazkov,Matthew J. O’Meara,Frank DiMaio,Hahnbeom Park,Maxim V. Shapovalov,P. Douglas Renfrew,Vikram Khipple Mulligan,Kalli Kappel,Jason W. Labonte,Michael S. Pacella,Richard Bonneau,Philip Bradley,Roland L. Dunbrack,Rhiju Das,David Baker,Brian Kuhlman,Tanja Kortemme,Jeffrey J. Gray
标识
DOI:10.1021/acs.jctc.7b00125
摘要
Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta's success is the energy function: a model parametrized from small-molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. Finally, we discuss the latest advances in the energy function that extend its capabilities from soluble proteins to also include membrane proteins, peptides containing noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other macromolecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI