数学
压缩性
流量(数学)
可压缩流
能量(信号处理)
理论(学习稳定性)
数值分析
应用数学
相(物质)
能量法
数学分析
机械
几何学
物理
计算机科学
统计
机器学习
量子力学
作者
Jisheng Kou,Shuyu Sun,Xiuhua Wang
摘要
In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multicomponent two-phase compressible flow with a realistic equation of state (e.g., Peng--Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure consistency with the mass balance equations. Moreover, we propose a componentwise SAV approach for a multicomponent fluid, which requires solving a sequence of linear, separate mass balance equations. The fully discrete schemes are also constructed based on the finite difference/volume methods with the upwind scheme on staggered grids. We prove that the semidiscrete and fully discrete schemes preserve the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI