A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings

计算机科学 卷积神经网络 可靠性(半导体) 人工智能 深度学习 振动 概括性 支持向量机 机器学习 降级(电信) 人工神经网络 模式识别(心理学) 可靠性工程 数据挖掘 工程类 心理治疗师 物理 功率(物理) 电信 量子力学 心理学
作者
Cheng Cheng,Guijun Ma,Yong Zhang,Mingyang Sun,Fei Teng,Han Ding,Ye Yuan
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 1243-1254 被引量:180
标识
DOI:10.1109/tmech.2020.2971503
摘要

In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a $\epsilon$-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关键词完成签到,获得积分10
刚刚
chen完成签到,获得积分10
2秒前
坚强怀绿完成签到,获得积分10
3秒前
Emma发布了新的文献求助10
3秒前
zjh完成签到,获得积分10
3秒前
仁爱觅风完成签到 ,获得积分10
3秒前
文根完成签到,获得积分10
4秒前
朴素青寒完成签到,获得积分10
4秒前
4秒前
霸气的念云完成签到,获得积分10
5秒前
xwl完成签到,获得积分10
5秒前
5秒前
尔东先生完成签到,获得积分10
6秒前
好久不见完成签到,获得积分10
6秒前
6秒前
7秒前
滴滴嘟完成签到,获得积分10
7秒前
甄遥完成签到,获得积分10
7秒前
杜嘟嘟完成签到,获得积分10
7秒前
8秒前
9秒前
Emma完成签到,获得积分10
9秒前
9秒前
wxyes发布了新的文献求助10
10秒前
10秒前
10秒前
笨笨鲜花完成签到,获得积分10
10秒前
文静身边充满小确幸完成签到 ,获得积分10
11秒前
12秒前
12秒前
Runlai_Xu发布了新的文献求助10
12秒前
wuhuww完成签到,获得积分10
13秒前
li完成签到,获得积分10
13秒前
13秒前
忧郁如柏完成签到,获得积分10
14秒前
机智的无春完成签到,获得积分20
14秒前
panpan111完成签到,获得积分10
15秒前
科研F5完成签到,获得积分10
15秒前
zlx0920完成签到 ,获得积分20
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754800
求助须知:如何正确求助?哪些是违规求助? 4098453
关于积分的说明 12679790
捐赠科研通 3812344
什么是DOI,文献DOI怎么找? 2104520
邀请新用户注册赠送积分活动 1129681
关于科研通互助平台的介绍 1007457