Channel selection in motor imaginary-based brain-computer interfaces: a particle swarm optimization algorithm

粒子群优化 脑-机接口 计算机科学 接口(物质) 频道(广播) 多群优化 群体行为 集合(抽象数据类型) 模式识别(心理学) 二进制数 遗传算法 人工智能 算法 数学 机器学习 脑电图 最大气泡压力法 精神科 算术 气泡 并行计算 计算机网络 心理学 程序设计语言
作者
Lei Zhang,Qingguo Wei
出处
期刊:Journal of Integrative Neuroscience [Imperial College Press]
卷期号:18 (2): 141-141 被引量:14
标识
DOI:10.31083/j.jin.2019.02.17
摘要

The number of electrode channels in a brain-computer interface affects not only its classification performance, but also its convenience in practical applications. However, an effective method for determining the number of channels has not yet been established for motor imagery-based brain-computer interfaces. This paper proposes a novel evolutionary search algorithm, binary quantum-behaved particle swarm optimization, for channel selection, which is implemented in a wrapping manner, coupling common spatial pattern for feature extraction, and support vector machine for classification. The fitness function of binary quantum-behaved particle swarm optimization is defined as the weighted sum of classification error rate and relative number of channels. The classification performance of the binary quantum-behaved particle swarm optimization-based common spatial pattern was evaluated on an electroencephalograph data set and an electrocorticography data set. It was subsequently compared with that of other three common spatial pattern methods: using the channels selected by binary particle swarm optimization, all channels in raw data sets, and channels selected manually. Experimental results showed that the proposed binary quantum-behaved particle swarm optimization-based common spatial pattern method outperformed the other three common spatial pattern methods, significantly decreasing the classification error rate and number of channels, as compared to the common spatial pattern method using whole channels in raw data sets. The proposed method can significantly improve the practicability and convenience of a motor imagery-based brain-computer interface system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
金超智发布了新的文献求助10
3秒前
AmbitionY完成签到,获得积分10
5秒前
ding应助心灵美的花卷采纳,获得10
5秒前
zyc完成签到,获得积分10
7秒前
8秒前
烟花应助无辜澜采纳,获得10
9秒前
大模型应助武雨寒采纳,获得10
11秒前
追逐的疯完成签到 ,获得积分10
12秒前
13秒前
鑫渊完成签到,获得积分10
15秒前
一一应助激情的一斩采纳,获得20
15秒前
uu完成签到 ,获得积分20
15秒前
Ava应助激昂的如柏采纳,获得10
16秒前
dou完成签到 ,获得积分10
16秒前
领导范儿应助Colossus采纳,获得10
17秒前
17秒前
Rico_完成签到,获得积分10
18秒前
22秒前
小小菜鸟完成签到 ,获得积分10
22秒前
22秒前
Akim应助吃吃货采纳,获得10
23秒前
望南完成签到,获得积分10
24秒前
无花果应助Rico_采纳,获得10
25秒前
FashionBoy应助小橘采纳,获得10
26秒前
Siyu完成签到 ,获得积分10
27秒前
27秒前
彭于晏应助顺利纸飞机采纳,获得10
27秒前
陈陈发布了新的文献求助10
27秒前
28秒前
29秒前
苹果酸奶完成签到 ,获得积分10
29秒前
叫我少爷完成签到 ,获得积分10
30秒前
32秒前
shufessm完成签到,获得积分0
32秒前
xiaobai完成签到,获得积分10
32秒前
武雨寒发布了新的文献求助10
33秒前
白日梦发布了新的文献求助10
34秒前
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800362
求助须知:如何正确求助?哪些是违规求助? 3345637
关于积分的说明 10326218
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680810
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763560