Predictive modeling of wildfires: A new dataset and machine learning approach

计算机科学 大数据 随机森林 支持向量机 中分辨率成像光谱仪 机器学习 遥感 归一化差异植被指数 人工神经网络 深度学习 自然灾害 卫星 人工智能 数据挖掘 气候变化 气象学 地理 工程类 生态学 生物 航空航天工程
作者
Younes Oulad Sayad,Hajar Mousannif,Hassan Al Moatassime
出处
期刊:Fire Safety Journal [Elsevier]
卷期号:104: 130-146 被引量:296
标识
DOI:10.1016/j.firesaf.2019.01.006
摘要

Wildfires, whether natural or caused by humans, are considered among the most dangerous and devastating disasters around the world. Their complexity comes from the fact that they are hard to predict, hard to extinguish and cause enormous financial losses. To address this issue, many research efforts have been conducted in order to monitor, predict and prevent wildfires using several Artificial Intelligence techniques and strategies such as Big Data, Machine Learning, and Remote Sensing. The latter offers a rich source of satellite images, from which we can retrieve a huge amount of data that can be used to monitor wildfires. The method used in this paper combines Big Data, Remote Sensing and Data Mining algorithms (Artificial Neural Network and SVM) to process data collected from satellite images over large areas and extract insights from them to predict the occurrence of wildfires and avoid such disasters. For this reason, we implemented a methodology that serves this purpose by building a dataset based on Remote Sensing data related to the state of the crops (NDVI), meteorological conditions (LST), as well as the fire indicator “Thermal Anomalies”, these data, were acquired from “MODIS” (Moderate Resolution Imaging Spectroradiometer), a key instrument aboard the Terra and Aqua satellites. This dataset is available on GitHub via this link (https://github.com/ouladsayadyounes/Wildfires). Experiments were made using the big data platform “Databricks”. Experimental results gave high prediction accuracy (98.32%). These results were assessed using several validation strategies (e.g., classification metrics, cross-validation, and regularization) as well as a comparison with some wildfire early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆飞荷完成签到,获得积分10
刚刚
舒适的初雪完成签到,获得积分10
刚刚
玖玖发布了新的文献求助10
刚刚
生鱼安乐完成签到,获得积分10
刚刚
细心青雪完成签到 ,获得积分10
1秒前
自觉鸵鸟发布了新的文献求助10
2秒前
学吗完成签到,获得积分10
2秒前
幸福的依瑶完成签到,获得积分10
2秒前
理理完成签到 ,获得积分10
2秒前
魔幻若血完成签到,获得积分10
2秒前
浮游应助自信半梦采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
小闲鱼发布了新的文献求助30
4秒前
素年锦时完成签到,获得积分10
4秒前
peter完成签到,获得积分10
4秒前
shaw完成签到,获得积分10
4秒前
Jenny完成签到,获得积分10
4秒前
哎哟我去完成签到,获得积分10
4秒前
4秒前
邓谷云完成签到,获得积分10
6秒前
6秒前
可靠幼旋完成签到,获得积分10
6秒前
研友_ZrBNxZ完成签到,获得积分10
7秒前
Oasis完成签到,获得积分10
8秒前
8秒前
Armolt完成签到,获得积分10
8秒前
配你zzz完成签到,获得积分20
8秒前
自然耳机完成签到,获得积分10
8秒前
wangwang完成签到,获得积分10
8秒前
Hello应助从容宛筠采纳,获得10
9秒前
milan001完成签到,获得积分10
9秒前
王小乔完成签到 ,获得积分10
9秒前
小学生熊大完成签到,获得积分10
9秒前
小呆呆完成签到 ,获得积分10
10秒前
Akim应助你好采纳,获得10
10秒前
爱吃粑粑完成签到,获得积分10
10秒前
真的苦逼完成签到,获得积分10
11秒前
Aurora完成签到,获得积分10
12秒前
RangerSia完成签到,获得积分10
12秒前
laity完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470764
求助须知:如何正确求助?哪些是违规求助? 4573616
关于积分的说明 14339604
捐赠科研通 4500701
什么是DOI,文献DOI怎么找? 2465922
邀请新用户注册赠送积分活动 1454143
关于科研通互助平台的介绍 1428858