MetGem Software for the Generation of Molecular Networks Based on the t-SNE Algorithm

嵌入 工作流程 计算机科学 软件 维数之咒 降维 相似性(几何) 化学空间 算法 代表(政治) 图形 数据挖掘 理论计算机科学 人工智能 化学 数据库 政治 药物发现 图像(数学) 生物化学 程序设计语言 法学 政治学
作者
Florent Olivon,Nicolas Elie,Gwendal Grelier,Fanny Roussi,Marc Litaudon,David Touboul
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (23): 13900-13908 被引量:206
标识
DOI:10.1021/acs.analchem.8b03099
摘要

Molecular networking (MN) is becoming a standard bioinformatics tool in the metabolomic community. Its paradigm is based on the observation that compounds with a high degree of chemical similarity share comparable MS2 fragmentation pathways. To afford a clear separation between MS2 spectral clusters, only the most relevant similarity scores are selected using dedicated filtering steps requiring time-consuming parameter optimization. Depending on the filtering values selected, some scores are arbitrarily deleted and a part of the information is ignored. The problem of creating a reliable representation of MS2 spectra data sets can be solved using algorithms developed for dimensionality reduction and pattern recognition purposes, such as t-distributed stochastic neighbor embedding (t-SNE). This multivariate embedding method pays particular attention to local details by using nonlinear outputs to represent the entire data space. To overcome the limitations inherent to the GNPS workflow and the networking architecture, we developed MetGem. Our software allows the parallel investigation of two complementary representations of the raw data set, one based on a classic GNPS-style MN and another based on the t-SNE algorithm. The t-SNE graph preserves the interactions between related groups of spectra, while the MN output allows an unambiguous separation of clusters. Additionally, almost all parameters can be tuned in real time, and new networks can be generated within a few seconds for small data sets. With the development of this unified interface ( https://metgem.github.io ), we fulfilled the need for a dedicated, user-friendly, local software for MS2 comparison and spectral network generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
asdruguo应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI2S应助zhaopen采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得30
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得20
3秒前
Ava应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
5秒前
阿伯茨发布了新的文献求助10
5秒前
怡然含桃发布了新的文献求助10
5秒前
党参完成签到,获得积分10
6秒前
6秒前
ZiZi应助子清采纳,获得10
7秒前
汉堡包应助ideal采纳,获得30
7秒前
神揽星辰入梦完成签到,获得积分10
7秒前
朱朱珠珠关注了科研通微信公众号
7秒前
Lorene发布了新的文献求助10
8秒前
Aqib完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520654
求助须知:如何正确求助?哪些是违规求助? 3962893
关于积分的说明 12282759
捐赠科研通 3626324
什么是DOI,文献DOI怎么找? 1995683
邀请新用户注册赠送积分活动 1031853
科研通“疑难数据库(出版商)”最低求助积分说明 922215