Nanostructured Metal Hydrides for Hydrogen Storage

氢气储存 纳米技术 氢化物 纳米尺度 化学 储能 氢经济 纳米结构 氢燃料 化学物理 材料科学 热力学 物理 功率(物理) 有机化学
作者
Andreas Schneemann,J. L. White,ShinYoung Kang,Sohee Jeong,Liwen F. Wan,Eun Seon Cho,Tae Wook Heo,David Prendergast,Jeffrey J. Urban,Brandon C. Wood,Mark D. Allendorf,Vitalie Stavila
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:118 (22): 10775-10839 被引量:463
标识
DOI:10.1021/acs.chemrev.8b00313
摘要

Knowledge and foundational understanding of phenomena associated with the behavior of materials at the nanoscale is one of the key scientific challenges toward a sustainable energy future. Size reduction from bulk to the nanoscale leads to a variety of exciting and anomalous phenomena due to enhanced surface-to-volume ratio, reduced transport length, and tunable nanointerfaces. Nanostructured metal hydrides are an important class of materials with significant potential for energy storage applications. Hydrogen storage in nanoscale metal hydrides has been recognized as a potentially transformative technology, and the field is now growing steadily due to the ability to tune the material properties more independently and drastically compared to those of their bulk counterparts. The numerous advantages of nanostructured metal hydrides compared to bulk include improved reversibility, altered heats of hydrogen absorption/desorption, nanointerfacial reaction pathways with faster rates, and new surface states capable of activating chemical bonds. This review aims to summarize the progress to date in the area of nanostructured metal hydrides and intends to understand and explain the underpinnings of the innovative concepts and strategies developed over the past decade to tune the thermodynamics and kinetics of hydrogen storage reactions. These recent achievements have the potential to propel further the prospects of tuning the hydride properties at nanoscale, with several promising directions and strategies that could lead to the next generation of solid-state materials for hydrogen storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
执着陈发布了新的文献求助10
6秒前
潇飞天下发布了新的文献求助10
10秒前
NexusExplorer应助张华明采纳,获得10
13秒前
执着陈完成签到,获得积分10
18秒前
NexusExplorer应助小哀采纳,获得10
22秒前
共享精神应助祁曼岚采纳,获得10
23秒前
23秒前
23秒前
24秒前
Denmark发布了新的文献求助10
24秒前
25秒前
蓁66完成签到,获得积分10
26秒前
D1fficulty发布了新的文献求助30
28秒前
张华明完成签到,获得积分10
29秒前
自然馈赠发布了新的文献求助10
29秒前
30秒前
张华明发布了新的文献求助10
32秒前
祁曼岚发布了新的文献求助10
36秒前
39秒前
hhhzzz完成签到,获得积分10
39秒前
耍酷以柳发布了新的文献求助10
40秒前
柯君发布了新的文献求助10
40秒前
Lake完成签到,获得积分10
41秒前
43秒前
amxl发布了新的文献求助10
44秒前
Lake发布了新的文献求助20
48秒前
Pretentious发布了新的文献求助10
49秒前
laura完成签到,获得积分10
49秒前
wangjingli666应助科研通管家采纳,获得10
51秒前
我是老大应助科研通管家采纳,获得10
51秒前
Akim应助科研通管家采纳,获得10
51秒前
友好冷之应助科研通管家采纳,获得20
51秒前
51秒前
星辰大海应助科研通管家采纳,获得10
51秒前
在水一方应助耍酷以柳采纳,获得10
55秒前
57秒前
57秒前
初晴完成签到,获得积分0
58秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2386544
求助须知:如何正确求助?哪些是违规求助? 2092975
关于积分的说明 5266773
捐赠科研通 1819839
什么是DOI,文献DOI怎么找? 907766
版权声明 559181
科研通“疑难数据库(出版商)”最低求助积分说明 484897