Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils

分摊 多元统计 地质统计学 环境科学 环境化学 土壤水分 土壤科学 空间变异性 化学 数学 统计 政治学 法学
作者
Jianshu Lv
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:244: 72-83 被引量:277
标识
DOI:10.1016/j.envpol.2018.09.147
摘要

Absolute principal component score/multiple linear regression (APCS/MLR) and positive matrix factorization (PMF) were applied to a dataset consisting of 10 heavy metals in 300 surface soils samples. Robust geostatistics were used to delineate and compare the factors derived from these two receptor models. Both APCS/MLR and PMF afforded three similar source factors with comparable contributions, but APCS/MLR had some negative and unidentified contributions; thus, PMF, with its optimal non-negativity results, was adopted for source apportionment. Experimental variograms for each factor from two receptor models were built using classical Matheron's and three robust estimators. The best association of experimental variograms fitted to theoretical models differed between the corresponding APCS and PMF-factors. However, kriged interpolation indicated that the corresponding APCS and PMF-factor showed similar spatial variability. Based on PMF and robust geostatistics, three sources of 10 heavy metals in Guangrao were determined. As, Co, Cr, Cu, Mn, Ni, Zn, and partially Hg, Pb, Cd originated from natural source. The factor grouping these heavy metals showed consistent distribution with parent material map. 43.1% of Hg and 13.2% of Pb were related to atmosphere deposition of human inputs, with high values of their association patterns being located around urban areas. 29.6% concentration of Cd was associated with agricultural practice, and the hotspot coincided with the spatial distribution of vegetable-producing soils. Overall, natural source, atmosphere deposition of human emissions, and agricultural practices, explained 81.1%, 7.3%, and 11.6% of the total of 10 heavy metals concentrations, respectively. Receptor models coupled with robust geostatistics could successfully estimate the source apportionment of heavy metals in soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxz发布了新的文献求助10
1秒前
我是老大应助kingcoming采纳,获得10
1秒前
科研通AI5应助VISIN采纳,获得100
2秒前
MuMu完成签到 ,获得积分10
2秒前
5秒前
陈泽完成签到,获得积分10
7秒前
科研通AI5应助Wizard采纳,获得10
7秒前
8秒前
5年科研3年毕业完成签到,获得积分10
9秒前
10秒前
NXK发布了新的文献求助10
10秒前
10秒前
11秒前
李玉祥发布了新的文献求助10
13秒前
13秒前
13秒前
动漫大师发布了新的文献求助10
16秒前
虚拟的芾发布了新的文献求助10
16秒前
kingcoming发布了新的文献求助10
17秒前
凶狠的苗条完成签到,获得积分20
17秒前
19秒前
19秒前
充电宝应助虚拟的芾采纳,获得10
23秒前
慧海拾穗完成签到 ,获得积分10
24秒前
楚阔发布了新的文献求助10
25秒前
小也完成签到 ,获得积分10
25秒前
26秒前
科研通AI5应助Bonnienuit采纳,获得10
29秒前
courage完成签到 ,获得积分10
29秒前
大模型应助treetree采纳,获得10
30秒前
李昕123发布了新的文献求助10
32秒前
卢敏明发布了新的文献求助10
32秒前
as112358完成签到 ,获得积分10
32秒前
ZXT完成签到 ,获得积分10
36秒前
忧伤的慕梅完成签到 ,获得积分10
36秒前
芋圆不圆完成签到,获得积分10
37秒前
38秒前
活泼山雁完成签到,获得积分10
38秒前
42秒前
李玉祥完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669