流式细胞术
软骨细胞
软骨
间充质干细胞
阿格里坎
化学
细胞凋亡
骨关节炎
癌症研究
细胞生物学
分子生物学
医学
生物
病理
解剖
生物化学
替代医学
关节软骨
作者
Yubao Liu,Rui Zou,Zhen Wang,Chuanyang Wen,Fan Zhang,Fuqing Lin
摘要
The present study was designed to explore whether exosomal lncRNA-KLF3-AS1 derived from human mesenchymal stem cells (hMSCs) can serve as a positive treatment for osteoarthritis (OA). hMSCs and MSC-derived exosomes (MSC-exo) were prepared for morphological observation and identification by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and collagenase-induced rat model of OA were established for the further experiments. Lentivirus-mediated siRNA targeting KLF3-AS1 was transfected into MSCs for silencing KLF3-AS1. The real-time quantitative PCR and western blotting analysis were performed to examine the mRNA and protein levels of type II collagen alpha 1 (Col2a1), aggrecan, matrix metalloproteinase 13 and runt-related transcription factor 2. Cell proliferation, apoptosis and migration were evaluated by CCK-8 assay, flow cytometry and transwell assay. HE (hematoxylin and eosin) staining and immunohistochemistry were used for histopathological studies. MSC-exo ameliorated IL-1β-induced cartilage injury. Furthermore, lncRNA KLF3-AS1 was markedly enriched in MSC-exo, and exosomal KLF3-AS1 suppressed IL-1β-induced apoptosis of chondrocytes. Further in vivo investigation indicated that exosomal KLF3-AS1 promoted cartilage repair in a rat model of OA. Exosomal KLF3-AS1 promoted cartilage repair and chondrocyte proliferation in a rat model of OA, which might be an underlying therapeutic target for OA.
科研通智能强力驱动
Strongly Powered by AbleSci AI