美拉德反应                        
                
                                
                        
                            甲基乙二醛                        
                
                                
                        
                            乙二醛                        
                
                                
                        
                            化学                        
                
                                
                        
                            赖氨酸                        
                
                                
                        
                            乳糖                        
                
                                
                        
                            阿玛多利重排                        
                
                                
                        
                            单糖                        
                
                                
                        
                            戊糖苷                        
                
                                
                        
                            半乳糖                        
                
                                
                        
                            果糖                        
                
                                
                        
                            生物化学                        
                
                                
                        
                            双乙酰                        
                
                                
                        
                            碳水化合物                        
                
                                
                        
                            食品科学                        
                
                                
                        
                            有机化学                        
                
                                
                        
                            孵化                        
                
                                
                        
                            糖基化                        
                
                                
                        
                            酶                        
                
                                
                        
                            氨基酸                        
                
                                
                        
                            受体                        
                
                        
                    
            作者
            
                Wei Zhang,Mahesha M. Poojary,Karsten Olsen,Colin Ray,Marianne N. Lund            
         
                    
        
    
            
            标识
            
                                    DOI:10.1021/acs.jafc.9b01532
                                    
                                
                                 
         
        
                
            摘要
            
            α-Dicarbonyls are reactive intermediates formed during Maillard reactions and carbohydrate degradation. The formation of seven α-dicarbonyls was characterized in solutions containing dairy related carbohydrates (galactose, glucose, lactose, and galacto-oligosaccharides (GOS)) during incubations at 40 and 50 °C with and without Nα-acetyl-l-lysine at pH 6.8 for up to 2 months. The concentrations of α-dicarbonyls in samples of monosaccharides with Nα-acetyl-l-lysine were found to be 3-deoxyglucosone (3-DG) > 3-deoxygalactosone (3-DGal) > glyoxal > glucosone, galactosone > methylglyoxal > diacetyl. The presence of Nα-acetyl-l-lysine resulted in up to 100-fold higher concentrations of C6 α-dicarbonyls but lesser formation of glyoxal in the monosaccharide-containing models compared to what was observed in the absence of Nα-acetyl-l-lysine. Galactose incubated with Nα-acetyl-l-lysine generated the highest concentrations of 3-DGal (up to 130 μM), glyoxal (up to 100 μM), and methylglyoxal (up to 9 μM) compared to the other carbohydrates during incubation. Surprisingly, 3-DG (1500 μM) and 3-DGal (80 μM) were formed at levels of 2 orders of magnitude higher in solutions of GOS in the absence of Nα-acetyl-l-lysine as compared to the other carbohydrates at 40 °C, while GOS generated the lowest levels of glyoxal. GOS are widely used as an ingredient in various types of foods products, and it is therefore of importance to consider the risk of generating high levels of the reactive C6 α-dicarbonyl, 3-DG, in these types of products. This study contributes to the understanding of major α-dicarbonyl formation as affected by the presence of primary amines in GOS-, lactose-, and galactose-containing solutions under moderate heating in liquid foods.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI