控制理论(社会学)
执行机构
容错
计算机科学
强化学习
同步(交流)
非线性系统
断层(地质)
控制器(灌溉)
工程类
控制(管理)
控制工程
观察员(物理)
人工智能
分布式计算
计算机网络
频道(广播)
物理
量子力学
地震学
地质学
农学
生物
作者
Wanbing Zhao,Hao Liu,Frank L. Lewis
标识
DOI:10.1109/tac.2021.3053194
摘要
In this article, the data-driven fault-tolerant synchronization control problem is investigated for unknown cooperative quadrotors subject to nonlinearities and multiple actuator faults in the quadrotor dynamics. A distributed observer is provided to estimate the state of the virtual leader. Based on the reinforcement learning theory, the optimal control policy is learned for each quadrotor without any knowledge of the quadrotor dynamic information. Then, the learned control policy is used to construct a data-based fault-tolerant controller to restrain the effects of quadrotor actuator faults. Stability of the constructed controller is proven and the simulation results illustrate the effectiveness of the proposed controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI