Artificial intelligence-enhanced electrocardiography in cardiovascular disease management

医学 疾病 精密医学 深度学习 心脏病学 心房颤动 重症监护医学 人工智能 人口 心源性猝死 内科学 机器学习 病理 计算机科学 环境卫生
作者
Konstantinos C. Siontis,Peter A. Noseworthy,Zachi I. Attia,Paul A. Friedman
出处
期刊:Nature Reviews Cardiology [Nature Portfolio]
卷期号:18 (7): 465-478 被引量:615
标识
DOI:10.1038/s41569-020-00503-2
摘要

The application of artificial intelligence (AI) to the electrocardiogram (ECG), a ubiquitous and standardized test, is an example of the ongoing transformative effect of AI on cardiovascular medicine. Although the ECG has long offered valuable insights into cardiac and non-cardiac health and disease, its interpretation requires considerable human expertise. Advanced AI methods, such as deep-learning convolutional neural networks, have enabled rapid, human-like interpretation of the ECG, while signals and patterns largely unrecognizable to human interpreters can be detected by multilayer AI networks with precision, making the ECG a powerful, non-invasive biomarker. Large sets of digital ECGs linked to rich clinical data have been used to develop AI models for the detection of left ventricular dysfunction, silent (previously undocumented and asymptomatic) atrial fibrillation and hypertrophic cardiomyopathy, as well as the determination of a person’s age, sex and race, among other phenotypes. The clinical and population-level implications of AI-based ECG phenotyping continue to emerge, particularly with the rapid rise in the availability of mobile and wearable ECG technologies. In this Review, we summarize the current and future state of the AI-enhanced ECG in the detection of cardiovascular disease in at-risk populations, discuss its implications for clinical decision-making in patients with cardiovascular disease and critically appraise potential limitations and unknowns. In this Review, Friedman and colleagues summarize the use of artificial intelligence-enhanced electrocardiography in the detection of cardiovascular disease in at-risk populations, discuss its implications for clinical decision-making in patients with cardiovascular disease and critically appraise potential limitations and unknowns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖冬的向日葵完成签到,获得积分10
刚刚
mm完成签到,获得积分10
刚刚
杰克李李发布了新的文献求助30
1秒前
热心醉蝶应助冰阔落采纳,获得10
2秒前
Yan完成签到,获得积分10
3秒前
3秒前
烟花应助耍酷剑封采纳,获得10
3秒前
3秒前
胖虎完成签到,获得积分10
4秒前
5秒前
安静无招完成签到 ,获得积分10
6秒前
8秒前
caicai完成签到,获得积分10
9秒前
小线团黑桃完成签到,获得积分10
10秒前
等待的觅珍完成签到,获得积分10
10秒前
fan发布了新的文献求助10
10秒前
blacksmith0完成签到,获得积分10
11秒前
12秒前
Bio应助材1采纳,获得30
12秒前
火星上难胜完成签到,获得积分10
12秒前
Sandy完成签到,获得积分10
14秒前
solitude完成签到,获得积分20
15秒前
慕青应助东哥采纳,获得10
16秒前
16秒前
16秒前
fan完成签到,获得积分10
17秒前
19秒前
bkagyin应助solitude采纳,获得20
19秒前
20秒前
20秒前
21秒前
年华完成签到,获得积分10
21秒前
Angew来来来完成签到,获得积分10
21秒前
Shi完成签到,获得积分10
22秒前
22秒前
阿兹卡班完成签到 ,获得积分10
22秒前
英姑应助史塔西采纳,获得10
22秒前
22秒前
Shi发布了新的文献求助10
24秒前
科研通AI5应助ender采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
Medicine and the Navy, 1200-1900: 1815-1900 420
Medical Professionalism Theory, Education, and Practice 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245768
求助须知:如何正确求助?哪些是违规求助? 3778951
关于积分的说明 11864536
捐赠科研通 3432779
什么是DOI,文献DOI怎么找? 1883923
邀请新用户注册赠送积分活动 935395
科研通“疑难数据库(出版商)”最低求助积分说明 841913