Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning

机器学习 糖尿病 人工智能 糖尿病性视网膜病变 随机森林 支持向量机
作者
Baoyi Liu,Bin Zhang,Yijun Hu,Dan Cao,Dawei Yang,Qiaowei Wu,Yu Hu,Jingwen Yang,Qingsheng Peng,Manqing Huang,Pingting Zhong,Xinran Dong,Songfu Feng,Tao Li,Haotian Lin,Hongmin Cai,Xiaohong Yang,Honghua Yu
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (1): 43-43 被引量:4
标识
DOI:10.21037/atm-20-1431
摘要

Background This study aimed to predict the treatment outcomes in patients with diabetic macular edema (DME) after 3 monthly anti-vascular endothelial growth factor (VEGF) injections using machine learning (ML) based on pretreatment optical coherence tomography (OCT) images and clinical variables. Methods An ensemble ML system consisting of four deep learning (DL) models and five classical machine learning (CML) models was developed to predict the posttreatment central foveal thickness (CFT) and the best-corrected visual acuity (BCVA). A total of 363 OCT images and 7,587 clinical data records from 363 eyes were included in the training set (304 eyes) and external validation set (59 eyes). The DL models were trained using the OCT images, and the CML models were trained using the OCT images features and clinical variables. The predictive posttreatment CFT and BCVA values were compared with true outcomes obtained from the medical records. Results For CFT prediction, the mean absolute error (MAE), root mean square error (RMSE), and R2 of the best-performing model in the training set was 66.59, 93.73, and 0.71, respectively, with an area under receiver operating characteristic curve (AUC) of 0.90 for distinguishing the eyes with good anatomical response. The MAE, RMSE, and R2 was 68.08, 97.63, and 0.74, respectively, with an AUC of 0.94 in the external validation set. For BCVA prediction, the MAE, RMSE, and R2 of the best-performing model in the training set was 0.19, 0.29, and 0.60, respectively, with an AUC of 0.80 for distinguishing eyes with a good functional response. The external validation achieved a MAE, RMSE, and R2 of 0.13, 0.20, and 0.68, respectively, with an AUC of 0.81. Conclusions Our ensemble ML system accurately predicted posttreatment CFT and BCVA after anti-VEGF injections in DME patients, and can be used to prospectively assess the efficacy of anti-VEGF therapy in DME patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DAN_完成签到,获得积分10
刚刚
葶苈子完成签到 ,获得积分10
1秒前
FashionBoy应助PLAGH221采纳,获得10
3秒前
嘻嘻叮完成签到,获得积分10
3秒前
零度完成签到 ,获得积分10
3秒前
今后应助留胡子的霖采纳,获得10
7秒前
Henry完成签到,获得积分10
13秒前
ding应助vvv采纳,获得10
14秒前
14秒前
jxm完成签到 ,获得积分10
18秒前
19秒前
口爱DI乔巴完成签到,获得积分10
19秒前
21秒前
霸气凡白完成签到,获得积分10
25秒前
脑洞疼应助jinzhen采纳,获得10
26秒前
Cruffin完成签到 ,获得积分10
27秒前
123发布了新的文献求助10
28秒前
最棒的宝宝完成签到,获得积分10
28秒前
28秒前
30秒前
lelsey完成签到,获得积分10
31秒前
31秒前
犹豫梦旋完成签到,获得积分10
31秒前
田様应助llllllb采纳,获得10
32秒前
33秒前
sfsdfs发布了新的文献求助10
34秒前
陆小果完成签到,获得积分10
34秒前
35秒前
35秒前
彭于晏应助科研通管家采纳,获得30
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
鲜艳的皮皮虾完成签到 ,获得积分10
37秒前
37秒前
CodeCraft应助sfsdfs采纳,获得10
38秒前
鱼跃完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779792
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222123
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549