Quantifying the Role of Electrode Thickness in Battery Rate Performance

电容 电池(电) 电极 扩散 计时安培法 材料科学 速率方程 热力学 分析化学(期刊) 化学 电气工程 功率(物理) 动力学 物理 电化学 循环伏安法 物理化学 工程类 量子力学 色谱法
作者
Dominik Horváth,João Coelho,Ruiyuan Tian,Jonathan N. Coleman
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (68): 3452-3452
标识
DOI:10.1149/ma2020-02683452mtgabs
摘要

Batteries are increasingly used in energy-storage applications where a high power is needed in tandem with a high capacity, with electric vehicles being a great example. These batteries ideally deliver large amounts of current for extended periods with no compromise in capacity. However, as the rate is increased, the capacity that can be delivered rapidly decreases. This effect is generally not described using quantitative metrics. In this work, we use a simple semi-empirical equation to model and fit capacity-rate data, allowing us to extract a characteristic time (τ) for charge/discharge that describes rate behavior (Fig. 1). In a recent publication Tian et al. proposed a link between τ, electrode kinetics and the physical parameters of an electrode (e.g. electrode thickness, L E ). 1 This equation has accurately described the rate behavior of a large variety of electrodes found in literature, for both Na and Li-ion batteries. It is possible to rearrange this equation such that τ equals a quadratic polynomial in L E , with constants a, b and c depending on tunable parameters (inset equation in Fig. 1). These parameters provide a reasonably comprehensive description of the rate performance of the material. With them we can assess the importance of solid-state diffusion, estimate the electrode capacitance and even calculate values for the liquid diffusion coefficient. Our aim is to further verify this equation and to quantitatively describe rate performance as a function of L E . We used chronoamperometry (CA) as an alternative to galvanostatic charge-discharge (GCD) to record capacity-rate curves. 2,3 This method combined with the previously described fitting process provides a quicker and easier way of obtaining rate information when compared to GCD. Our results show τ to be a quadratic function of L E , confirming the relationship proposed in Ref. 1. The measurements were repeated with a different separator thickness (L S ). As predicted by the equation in Fig. 1, the τ vs L E curve for the thicker L S follows the same behavior as the thinner L S , albeit with varied constants. The difference agrees with that predicted by the rate equation. Our results highlight the potential of the equation described by Tian et al. We have used the equation to describe how rate performance varies with L E . However, it is also possible to quantify the effects of other parameters such as the out-of-plane electrical conductivity (σ E ) 4 or L S . This level of analysis provides the means for better understanding rate performance and the means for designing electrodes for high-rate applications. In the future we hope to use the rate equation to design battery electrodes which possess very small values of τ and thus, excellent rate performance. We aim to achieve this by using optimization techniques such as design of experiments for the minimization of τ. The understanding gained from the equation would provide us with instructions on what parameters (L E , L S , σ E , etc.) to refine for maximized rate performance. References: 1 – https://www.nature.com/articles/s41467-019-09792-9 2 – https://arxiv.org/abs/1911.12305 3 – https://www.sciencedirect.com/science/article/abs/pii/S0378775318300776?via%3Dihub 4 – https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00034 Quantities for the rate equation in Fig. 1: L E – electrode thickness L S – separator thickness C V,eff – effective volumetric capacitance of the electrode σ E – out-of-plane electrical conductivity of the electrode material P E , P s – porosities of the electrode material and separator, respectively σ BL – overall (anion and cation) conductivity of the bulk electrolyte D BL , D AM – ion diffusion coefficients in bulk-liquid electrolyte and active material, respectively t c – characteristic time of reaction Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
思绪摸摸头完成签到 ,获得积分10
5秒前
小蘑菇应助逃亡的小狗采纳,获得10
5秒前
大力的宝川完成签到 ,获得积分10
7秒前
不如看海发布了新的文献求助10
8秒前
杨白秋完成签到,获得积分10
8秒前
田様应助1212431采纳,获得10
12秒前
14秒前
15秒前
伶俐念珍完成签到 ,获得积分10
16秒前
18秒前
激昂的飞松完成签到,获得积分20
18秒前
23秒前
25秒前
Lucas应助直率的花生采纳,获得10
28秒前
萨芬撒发布了新的文献求助10
28秒前
飞快的尔芙完成签到,获得积分10
29秒前
32秒前
白契完成签到 ,获得积分0
33秒前
共享精神应助ardoroso采纳,获得10
33秒前
37秒前
QAQ完成签到,获得积分10
38秒前
39秒前
樊大有完成签到 ,获得积分10
41秒前
43秒前
45秒前
冷傲中道发布了新的文献求助10
48秒前
Raymond发布了新的文献求助10
51秒前
伶俐问薇完成签到,获得积分10
51秒前
syrrr要发文章完成签到 ,获得积分10
53秒前
Typing完成签到,获得积分20
1分钟前
1分钟前
惠小之完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助和气生财君采纳,获得10
1分钟前
1分钟前
靓丽的熠彤完成签到,获得积分10
1分钟前
1212431发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401