亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH

化学 电化学 脱氢 酒精氧化 氢化物 有机化学 组合化学 光化学 电极 催化作用 物理化学
作者
Michael T. Bender,Yan Choi Lam,Sharon Hammes‐Schiffer,Kyoung‐Shin Choi
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (51): 21538-21547 被引量:335
标识
DOI:10.1021/jacs.0c10924
摘要

Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H2 evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation. Electrochemical alcohol oxidation by NiOOH has been understood since the 1970s to proceed through a hydrogen atom transfer to NiOOH. In this study, we establish that there is a second, more dominant general alcohol oxidation pathway on NiOOH enabled at more positive potentials. Using a three-step electrochemical procedure we developed, we deconvoluted the currents corresponding to these two pathways for various alcohols and aldehydes. The results show that alcohols and aldehydes have a distinct difference in their respective preferences for the two oxidation pathways. Our three-step electrochemical procedure also allowed us to evaluate the Ni valence involved with the different oxidation pathways to elucidate their mechanistic differences. Using these experimental results coupled with a computational investigation, we propose that the new pathway entails hydride transfer from the substrate to Ni4+ sites in NiOOH. This study offers an essential foundation to understand various oxidative electrochemical dehydrogenation reactions on oxide and hydroxide-based catalytic electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚身影完成签到,获得积分10
刚刚
流苏完成签到,获得积分0
4秒前
流苏2完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
15秒前
16秒前
邬美杰发布了新的文献求助10
21秒前
矢思然完成签到,获得积分10
24秒前
38秒前
BA1完成签到,获得积分10
39秒前
梅者如西发布了新的文献求助10
42秒前
浮游应助梅者如西采纳,获得10
49秒前
科研通AI6应助梅者如西采纳,获得10
49秒前
53秒前
8464368完成签到,获得积分10
54秒前
答辩完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
fml完成签到,获得积分10
1分钟前
辣辣完成签到,获得积分10
1分钟前
安详的面包完成签到,获得积分10
1分钟前
1分钟前
fml发布了新的文献求助10
1分钟前
1分钟前
梅者如西完成签到,获得积分10
1分钟前
1分钟前
江枫渔火完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
yexu发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650884
求助须知:如何正确求助?哪些是违规求助? 4781901
关于积分的说明 15052691
捐赠科研通 4809656
什么是DOI,文献DOI怎么找? 2572449
邀请新用户注册赠送积分活动 1528505
关于科研通互助平台的介绍 1487448