仰角(弹道)
计算机科学
弹道
全球地图
地形
计算机视觉
障碍物
同时定位和映射
人工智能
运动规划
代表(政治)
计算
机器人
地形图(神经解剖学)
实时计算
移动机器人
地理
算法
数学
地图学
后顶叶皮质
认知心理学
心理学
物理
几何学
考古
天文
政治
政治学
法学
作者
Pan Y,Xuecheng Xu,Xiaqing Ding,Shoudong Huang,Yue Wang,Rong Xiong
标识
DOI:10.1109/tim.2020.3044338
摘要
Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.
科研通智能强力驱动
Strongly Powered by AbleSci AI