热扩散率
热力学
扩散
粘度
Atom(片上系统)
化学
分子动力学
从头算
自扩散
工作(物理)
物理化学
计算化学
有机化学
物理
业务
嵌入式系统
营销
计算机科学
自助服务
作者
Qian Gao,Junke Wang,Yong Du,Shun‐Li Shang,Zi‐Kui Liu,Y.-J. Liu
标识
DOI:10.2298/jmmb200807037g
摘要
Atomic structure, diffusivity and viscosity of Al1-xMgx (x=0, 0.0039, 0.1172, 0.9180, 0.9961, 1)melts at 875, 1000, 1125, and 1250K were investigated by the ab initio molecular dynamics (AIMD) simulations. The simulated results are compared with available experimental and calculated data in the literature with reasonable agreements. Considering the results of pair correlation function g(r), it can be observed that Mg atoms in Al0.8828Mg0.1172 melt aggregate more obviously at 1000 and 1250K. For Al0.0820Mg0.9180, Al atom segregation is more obvious at 875 and 1000K. The tracer diffusion coefficients of Al or Mg in Al1-xMgx (x=0.1172, 0.9180) melts, and interdiffusion coefficients of Al0.8828Mg0.1172 and Al0.0820Mg0.9180 melts are all close to the self-diffusion coefficients of Al or Mg. With the increasing temperature, the diffusivity increases linearly. In dilute melts, the tracer diffusion coefficients of solute atom and the interdiffusion coefficients increase nonlinearly with the increasing temperature. For Al0.8828Mg0.1172 and Al0.0820Mg0.9180 melts, the viscosities ? are comparatively higher than pure melts. The viscosities of all melts decrease with the increasing temperature, then increase at 1250K. The results obtained in the present work provide an insight into the design of Al and Mg alloys.
科研通智能强力驱动
Strongly Powered by AbleSci AI