Understanding the Patient Experience: Analysis of 2-Word Assessment and Its Relationship to Likelihood to Recommend in Outpatient Hand Surgery

医学 分类 代理(统计) 家庭医学 门诊部 人工智能 内科学 计算机科学 机器学习
作者
Lauren M. Shapiro,Kevin A. Thomas,Sara L. Eppler,Raj Behal,Jeffery Yao,Robin N. Kamal
出处
期刊:Hand [SAGE Publishing]
卷期号:17 (6): 1201-1206 被引量:2
标识
DOI:10.1177/1558944720988078
摘要

Background: Actionable feedback from patients after a clinic visit can help inform ways to better deliver patient-centered care. A 2-word assessment may serve as a proxy for lengthy post-visit questionnaires. We tested the use of a 2-word assessment in an outpatient hand clinic. Methods: New patients were asked to provide a 2-word assessment of the following: (1) their physician; (2) their overall experience; and (3) recommendations for improvement and their likelihood to recommend (LTR) after their clinic visit. Sentiment analysis was used to categorize results into positive, neutral, or negative sentiment. Recommendations for improvement were classified into physician issue, system issue, or neither. We evaluated the relationship between LTR status, sentiment, actionable improvement opportunities, and classification (physician issue, system issue, or neither). Recommendations for improvement were classified into themes based on prior literature. Results: Sixty-seven (97.1%) patients noted positive sentiment toward their physician; 67 (97.1%) noted positive sentiment toward their overall experience. About 31% of improvement recommendations were system-based, 5.9% were physician-based, and 62.7% were neither. Patients not LTR were more likely to leave actionable opportunities for improvement than those LTR ( P = .01). Recommendations for improvement were classified into predetermined themes relating to: (1) physician interaction; (2) check-in process; (3) facilities; (4) unnecessary visit; and (5) appointment delays. Conclusion: Patients not likely to recommend provided actionable opportunities for improvement using a simple 2-word assessment. Implementation of a 2-word assessment in a hand clinic can be used to obtain actionable, real-time patient feedback that can inform operational change and improve the patient experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yekindar发布了新的文献求助10
1秒前
susan完成签到 ,获得积分10
2秒前
lxz发布了新的文献求助10
2秒前
不想学习发布了新的文献求助10
2秒前
万能图书馆应助火火采纳,获得10
2秒前
科研小郭发布了新的文献求助10
3秒前
自律发布了新的文献求助10
3秒前
3秒前
funny完成签到,获得积分10
3秒前
干脆苹果完成签到,获得积分10
3秒前
糖大唐发布了新的文献求助10
3秒前
5秒前
5秒前
小丫发布了新的文献求助10
6秒前
善学以致用应助yekindar采纳,获得10
6秒前
阿伟完成签到,获得积分10
6秒前
小星星发布了新的文献求助10
6秒前
zwq完成签到,获得积分10
7秒前
啦啦完成签到,获得积分10
8秒前
思源应助king采纳,获得10
8秒前
团子发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
LULU完成签到,获得积分10
12秒前
qpp完成签到,获得积分10
12秒前
自律完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
1234发布了新的文献求助10
15秒前
15秒前
Shock完成签到,获得积分10
16秒前
swx完成签到,获得积分10
16秒前
vivi完成签到,获得积分10
17秒前
17秒前
eric888应助小星星采纳,获得10
17秒前
18秒前
FashionBoy应助温柔的友容采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870468
求助须知:如何正确求助?哪些是违规求助? 3412681
关于积分的说明 10680469
捐赠科研通 3137091
什么是DOI,文献DOI怎么找? 1730598
邀请新用户注册赠送积分活动 834196
科研通“疑难数据库(出版商)”最低求助积分说明 781073