An Unsupervised Fault-Detection Method for Railway Turnouts

稳健性(进化) 聚类分析 故障检测与隔离 产量 数据挖掘 计算机科学 断层(地质) 状态监测 工程类 人工智能 模式识别(心理学) 地质学 地震学 政治学 生物化学 投票 法学 化学 执行机构 电气工程 基因 政治
作者
Zijian Guo,Yiming Wan,Hao Ye
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (11): 8881-8901 被引量:36
标识
DOI:10.1109/tim.2020.2998863
摘要

Railway turnouts require high-performance condition monitoring to prevent disastrous railway accidents. In industrial practice, turnouts' monitoring is usually done by railway workers who visually inspect the operating current curves. This results in huge labor costs and prone to human mistakes. Thus, automating the process of turnouts' monitoring via fault-detection algorithms is imperative. The available turnout field data bring three difficulties to fault detection: 1) large amounts of data do not have any labels; 2) data collected in normal condition have multiple unknown modes; and 3) there are only a small number of samples in some modes. To address these difficulties, this article develops a novel unsupervised fault-detection method by using deep autoencoders, which is composed of an unknown modes' mining stage and a multimode fault-detection stage. First, unknown modes are identified through clustering and employing engineer expertise. Then, an ensemble monitoring model, consisting of local monitoring models developed with individual fault-free modes and a global monitoring model developed by merging the data in all fault-free modes, is proposed to improve the overall fault-detection performance. In addition, to construct local models for the modes with a small number of samples, a one-class transfer learning algorithm is presented. In online monitoring, the decision of a newly arrived sample exploits both local models and the global model. Using both the simulated turnout data and the field data collected from a high-speed railway in China, the efficacy and robustness of the proposed approach are demonstrated by comparisons with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助lc采纳,获得10
1秒前
胡桃夹子发布了新的文献求助10
2秒前
知之发布了新的文献求助10
2秒前
Lucas应助光亮晓夏采纳,获得10
2秒前
英俊白玉完成签到,获得积分10
3秒前
pencil123完成签到,获得积分10
3秒前
嫣儿完成签到,获得积分10
4秒前
4秒前
Annie发布了新的文献求助30
4秒前
6秒前
Ephemerality完成签到 ,获得积分10
7秒前
8秒前
8秒前
琅琊稳重的团子完成签到,获得积分10
8秒前
9秒前
大饼哥完成签到,获得积分10
9秒前
jelly完成签到,获得积分10
11秒前
aa的学完成签到,获得积分10
11秒前
NexusExplorer应助闲逛的木头采纳,获得10
12秒前
高大的冰双完成签到,获得积分10
12秒前
谦让的鱼完成签到,获得积分10
12秒前
zuoqibin完成签到,获得积分10
13秒前
lc发布了新的文献求助10
13秒前
科目三应助有点儿小库采纳,获得10
14秒前
18秒前
huang完成签到 ,获得积分10
18秒前
18秒前
大大灰发布了新的文献求助10
20秒前
今天只做一件事应助一一采纳,获得10
21秒前
高高笑白完成签到,获得积分10
22秒前
木火完成签到,获得积分10
22秒前
niuniu顺利毕业完成签到 ,获得积分10
22秒前
今后应助辛坦夫采纳,获得10
22秒前
夏天的风发布了新的文献求助10
23秒前
An.发布了新的文献求助10
25秒前
猪猪侠完成签到,获得积分10
26秒前
LILY应助摇光采纳,获得10
27秒前
28秒前
小白完成签到,获得积分10
30秒前
An.完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4449596
求助须知:如何正确求助?哪些是违规求助? 3917810
关于积分的说明 12160854
捐赠科研通 3567458
什么是DOI,文献DOI怎么找? 1959061
邀请新用户注册赠送积分活动 998377
科研通“疑难数据库(出版商)”最低求助积分说明 893558