Construction and Validation of an Immune-Related Prognostic Model Based on TP53 Status in Colorectal Cancer

列线图 肿瘤科 比例危险模型 医学 危险系数 内科学 结直肠癌 队列 置信区间 Lasso(编程语言) 预测模型 癌症 总体生存率 计算机科学 万维网
作者
Xiaojuan Zhao,Jianzhong Liu,Shuzhen Liu,Fangfang Yang,Erfei Chen
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1722-1722 被引量:23
标识
DOI:10.3390/cancers11111722
摘要

Growing evidence has indicated that prognostic biomarkers have a pivotal role in tumor and immunity biological processes. TP53 mutation can cause a range of changes in immune response, progression, and prognosis of colorectal cancer (CRC). Thus, we aim to build an immunoscore prognostic model that may enhance the prognosis of CRC from an immunological perspective. We estimated the proportion of immune cells in the GSE39582 public dataset using the CIBERSORT (Cell type identification by estimating relative subset of known RNA transcripts) algorithm. Prognostic genes that were used to establish the immunoscore model were generated by the LASSO (Least absolute shrinkage and selection operator) Cox regression model. We established and validated the immunoscore model in GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) cohorts, respectively; significant differences of overall survival analysis were found between the low and high immunoscore groups or TP53 subgroups. In the multivariable Cox analysis, we observed that the immunoscore was an independent prognostic factor both in the GEO cohort (HR (Hazard ratio) 1.76, 95% CI (confidence intervals): 1.26–2.46) and the TCGA cohort (HR 1.95, 95% CI: 1.20–3.18). Furthermore, we established a nomogram for clinical application, and the results suggest that the nomogram is a better predictive model for prognosis than immunoscore or TNM staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助眯眯眼的枕头采纳,获得10
刚刚
Linco完成签到 ,获得积分10
1秒前
JinGN完成签到,获得积分10
3秒前
xx发布了新的文献求助10
3秒前
张泽芝发布了新的文献求助10
4秒前
SciGPT应助聪明夏山采纳,获得10
8秒前
8秒前
平淡荟完成签到,获得积分10
10秒前
10秒前
动听安筠完成签到 ,获得积分10
11秒前
研友_Lw7MKL完成签到,获得积分10
13秒前
13秒前
科目三应助夏冰采纳,获得10
13秒前
14秒前
ying完成签到 ,获得积分10
15秒前
斯文败类应助11111采纳,获得10
15秒前
申锴发布了新的文献求助10
16秒前
jiaxuan关注了科研通微信公众号
16秒前
白马非马jmh完成签到,获得积分20
17秒前
20秒前
21秒前
完美世界应助DI采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
Evan Wang发布了新的文献求助10
22秒前
22秒前
24秒前
科研通AI5应助申锴采纳,获得10
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
辣小扬发布了新的文献求助10
27秒前
jiaxuan发布了新的文献求助10
28秒前
28秒前
夏冰发布了新的文献求助10
28秒前
孔乙己完成签到,获得积分10
30秒前
pangpang1992完成签到 ,获得积分10
31秒前
吴晓敏发布了新的文献求助10
31秒前
lin完成签到,获得积分20
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864803
求助须知:如何正确求助?哪些是违规求助? 3407269
关于积分的说明 10653363
捐赠科研通 3131275
什么是DOI,文献DOI怎么找? 1726909
邀请新用户注册赠送积分活动 832096
科研通“疑难数据库(出版商)”最低求助积分说明 780127