Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony

视交叉上核 每2 昼夜节律 生物 生物钟 血管活性肠肽 神经科学 荧光素酶 光遗传学 加压素 细胞生物学 时钟 黑素psin 内分泌学 视网膜 光对昼夜节律的影响 运动前神经元活动 内科学
作者
Yongli Shan,John F. Abel,Yan Li,Mariko Izumo,Kimberly Cox,Byeongha Jeong,Seung Min Yoo,David L. Olson,Francis J. Doyle
出处
期刊:Neuron [Cell Press]
卷期号:108 (1): 164-179.e7 被引量:45
标识
DOI:10.1016/j.neuron.2020.07.012
摘要

•Color-Switch PER2::iLuc is a novel, Cre-inducible mouse reporter for circadian rhythms•Dual-color imaging acquires and unmixes concurrent signals from distinct cell types•SCN AVP and VIP neurons have different functions in network synchrony and stability•Bmal1 has an essential function in AVP neurons for network synchrony in the SCN The suprachiasmatic nucleus (SCN) acts as a master pacemaker driving circadian behavior and physiology. Although the SCN is small, it is composed of many cell types, making it difficult to study the roles of particular cells. Here we develop bioluminescent circadian reporter mice that are Cre dependent, allowing the circadian properties of genetically defined populations of cells to be studied in real time. Using a Color-Switch PER2::LUCIFERASE reporter that switches from red PER2::LUCIFERASE to green PER2::LUCIFERASE upon Cre recombination, we assess circadian rhythms in two of the major classes of peptidergic neurons in the SCN: AVP (arginine vasopressin) and VIP (vasoactive intestinal polypeptide). Surprisingly, we find that circadian function in AVP neurons, not VIP neurons, is essential for autonomous network synchrony of the SCN and stability of circadian rhythmicity. The suprachiasmatic nucleus (SCN) acts as a master pacemaker driving circadian behavior and physiology. Although the SCN is small, it is composed of many cell types, making it difficult to study the roles of particular cells. Here we develop bioluminescent circadian reporter mice that are Cre dependent, allowing the circadian properties of genetically defined populations of cells to be studied in real time. Using a Color-Switch PER2::LUCIFERASE reporter that switches from red PER2::LUCIFERASE to green PER2::LUCIFERASE upon Cre recombination, we assess circadian rhythms in two of the major classes of peptidergic neurons in the SCN: AVP (arginine vasopressin) and VIP (vasoactive intestinal polypeptide). Surprisingly, we find that circadian function in AVP neurons, not VIP neurons, is essential for autonomous network synchrony of the SCN and stability of circadian rhythmicity. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) acts as a master pacemaker controlling circadian rhythms in behavioral states (sleep-wake), feeding behavior, body temperature, and endocrine physiology (Hastings et al., 2018Hastings M.H. Maywood E.S. Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus.Nat. Rev. Neurosci. 2018; 19: 453-469Crossref PubMed Scopus (192) Google Scholar; Saper, 2013Saper C.B. The central circadian timing system.Curr. Opin. Neurobiol. 2013; 23: 747-751Crossref PubMed Scopus (84) Google Scholar; Welsh et al., 2010Welsh D.K. Takahashi J.S. Kay S.A. Suprachiasmatic nucleus: cell autonomy and network properties.Annu. Rev. Physiol. 2010; 72: 551-577Crossref PubMed Scopus (717) Google Scholar). The SCN, like other nuclei within the hypothalamus, contains a heterogenous population of ∼10,000 neurons that secrete more than 100 identified neurotransmitters, neuropeptides, cytokines, and growth factors (Abrahamson and Moore, 2001Abrahamson E.E. Moore R.Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections.Brain Res. 2001; 916: 172-191Crossref PubMed Scopus (507) Google Scholar; Lee et al., 2013Lee J.E. Zamdborg L. Southey B.R. Atkins Jr., N. Mitchell J.W. Li M. Gillette M.U. Kelleher N.L. Sweedler J.V. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus.J. Proteome Res. 2013; 12: 585-593Crossref PubMed Scopus (42) Google Scholar; Morin, 2013Morin L.P. Neuroanatomy of the extended circadian rhythm system.Exp. Neurol. 2013; 243: 4-20Crossref PubMed Scopus (153) Google Scholar; Welsh et al., 2010Welsh D.K. Takahashi J.S. Kay S.A. Suprachiasmatic nucleus: cell autonomy and network properties.Annu. Rev. Physiol. 2010; 72: 551-577Crossref PubMed Scopus (717) Google Scholar). Some of these signaling molecules play important roles in cell-cell coupling, a process that synchronizes period length and phase relationships among SCN neurons (Bedont and Blackshaw, 2015Bedont J.L. Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks.Front. Syst. Neurosci. 2015; 9: 74Crossref PubMed Scopus (34) Google Scholar; Colwell, 2011Colwell C.S. Linking neural activity and molecular oscillations in the SCN.Nat. Rev. Neurosci. 2011; 12: 553-569Crossref PubMed Scopus (285) Google Scholar; Evans et al., 2013Evans J.A. Leise T.L. Castanon-Cervantes O. Davidson A.J. Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons.Neuron. 2013; 80: 973-983Abstract Full Text Full Text PDF PubMed Scopus (119) Google Scholar; Hastings et al., 2018Hastings M.H. Maywood E.S. Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus.Nat. Rev. Neurosci. 2018; 19: 453-469Crossref PubMed Scopus (192) Google Scholar; Herzog, 2007Herzog E.D. Neurons and networks in daily rhythms.Nat. Rev. Neurosci. 2007; 8: 790-802Crossref PubMed Scopus (187) Google Scholar; Mohawk and Takahashi, 2011Mohawk J.A. Takahashi J.S. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.Trends Neurosci. 2011; 34: 349-358Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar). However, the roles of specific SCN cell types and the intercellular signaling mechanisms engaged in the generation of behavioral circadian rhythms are not fully understood. The study of circadian rhythms requires long timescales (days to weeks) and sensitive detection methods. Pioneered by Millar et al., 1995Millar A.J. Carré I.A. Strayer C.A. Chua N.H. Kay S.A. Circadian clock mutants in Arabidopsis identified by luciferase imaging.Science. 1995; 267: 1161-1163Crossref PubMed Scopus (456) Google Scholar, in vivo bioluminescence imaging has long been used to observe circadian rhythms in real time because of its extremely low background and high signal-to-noise ratio (Troy et al., 2004Troy T. Jekic-McMullen D. Sambucetti L. Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models.Mol. Imaging. 2004; 3: 9-23Crossref PubMed Scopus (306) Google Scholar; Yamazaki and Takahashi, 2005Yamazaki S. Takahashi J.S. Real-time luminescence reporting of circadian gene expression in mammals.Methods Enzymol. 2005; 393: 288-301Crossref PubMed Scopus (136) Google Scholar). The dynamics of circadian gene expression in the SCN have been studied using real-time imaging of Per1-luciferase and PER2::LUCIFERASE, as well as other transgenic mouse models (Cheng et al., 2009Cheng H.Y. Alvarez-Saavedra M. Dziema H. Choi Y.S. Li A. Obrietan K. Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain.Hum. Mol. Genet. 2009; 18: 3110-3124Crossref PubMed Scopus (38) Google Scholar; Kuhlman et al., 2000Kuhlman S.J. Quintero J.E. McMahon D.G. GFP fluorescence reports Period 1 circadian gene regulation in the mammalian biological clock.Neuroreport. 2000; 11: 1479-1482Crossref PubMed Scopus (14) Google Scholar; Mei et al., 2018Mei L. Fan Y. Lv X. Welsh D.K. Zhan C. Zhang E.E. Long-term in vivo recording of circadian rhythms in brains of freely moving mice.Proc. Natl. Acad. Sci. USA. 2018; 115: 4276-4281Crossref PubMed Scopus (24) Google Scholar; Ono et al., 2016Ono D. Honma S. Honma K. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN.Sci. Adv. 2016; 2: e1600960Crossref PubMed Scopus (40) Google Scholar; Welsh and Kay, 2005Welsh D.K. Kay S.A. Bioluminescence imaging in living organisms.Curr. Opin. Biotechnol. 2005; 16: 73-78Crossref PubMed Scopus (136) Google Scholar; Wilsbacher et al., 2002Wilsbacher L.D. Yamazaki S. Herzog E.D. Song E.J. Radcliffe L.A. Abe M. Block G. Spitznagel E. Menaker M. Takahashi J.S. Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo.Proc. Natl. Acad. Sci. USA. 2002; 99: 489-494Crossref PubMed Scopus (118) Google Scholar; Yamaguchi et al., 2003Yamaguchi S. Isejima H. Matsuo T. Okura R. Yagita K. Kobayashi M. Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus.Science. 2003; 302: 1408-1412Crossref PubMed Scopus (689) Google Scholar; Yamazaki and Takahashi, 2005Yamazaki S. Takahashi J.S. Real-time luminescence reporting of circadian gene expression in mammals.Methods Enzymol. 2005; 393: 288-301Crossref PubMed Scopus (136) Google Scholar; Yoo et al., 2004Yoo S.H. Yamazaki S. Lowrey P.L. Shimomura K. Ko C.H. Buhr E.D. Siepka S.M. Hong H.K. Oh W.J. Yoo O.J. et al.PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues.Proc. Natl. Acad. Sci. USA. 2004; 101: 5339-5346Crossref PubMed Scopus (1553) Google Scholar). However, circadian genes are ubiquitously expressed, making it difficult to study the circadian properties of specific SCN cell types. This gap in our knowledge motivated us to develop circadian reporter mice that allow conditional genetic manipulation to selectively interrogate subpopulations of SCN neurons. Our novel Color-Switch PER2::LUCIFERASE mouse line uses Cre-lox-dependent reporters that allow the circadian properties of genetically defined cell populations to be studied separately yet simultaneously. Two major classes of neuropeptide-containing neurons, AVP (arginine vasopressin) and VIP (vasoactive intestinal polypeptide), are enriched in the shell and the core regions of the SCN, respectively. There is ample evidence that VIP and VPAC2 receptor (VPAC2R) signaling is important for maintaining the coherence of circadian oscillators both within the SCN and in vivo for the generation of circadian behavioral rhythms (Aton et al., 2005Aton S.J. Colwell C.S. Harmar A.J. Waschek J. Herzog E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.Nat. Neurosci. 2005; 8: 476-483Crossref PubMed Scopus (552) Google Scholar; Colwell et al., 2003Colwell C.S. Michel S. Itri J. Rodriguez W. Tam J. Lelievre V. Hu Z. Liu X. Waschek J.A. Disrupted circadian rhythms in VIP- and PHI-deficient mice.Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003; 285: R939-R949Crossref PubMed Scopus (279) Google Scholar; Harmar et al., 2002Harmar A.J. Marston H.M. Shen S. Spratt C. West K.M. Sheward W.J. Morrison C.F. Dorin J.R. Piggins H.D. Reubi J.C. et al.The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei.Cell. 2002; 109: 497-508Abstract Full Text Full Text PDF PubMed Scopus (419) Google Scholar; Jones et al., 2018Jones J.R. Simon T. Lones L. Herzog E.D. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System.J. Neurosci. 2018; 38: 7986-7995Crossref PubMed Scopus (35) Google Scholar; Maywood et al., 2006Maywood E.S. Reddy A.B. Wong G.K. O’Neill J.S. O’Brien J.A. McMahon D.G. Harmar A.J. Okamura H. Hastings M.H. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling.Curr. Biol. 2006; 16: 599-605Abstract Full Text Full Text PDF PubMed Scopus (333) Google Scholar, Maywood et al., 2011Maywood E.S. Chesham J.E. O’Brien J.A. Hastings M.H. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.Proc. Natl. Acad. Sci. USA. 2011; 108: 14306-14311Crossref PubMed Scopus (186) Google Scholar). AVP signaling may also mediate interneuronal communication within the SCN, because loss of function of both AVP V1a and AVP V1b receptors profoundly alters the resetting response of mice to shifted light cycles (Yamaguchi et al., 2013Yamaguchi Y. Suzuki T. Mizoro Y. Kori H. Okada K. Chen Y. Fustin J.M. Yamazaki F. Mizuguchi N. Zhang J. et al.Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag.Science. 2013; 342: 85-90Crossref PubMed Scopus (204) Google Scholar). In addition, deletion of the core clock component, Bmal1, from AVP neurons lengthens the free-running period and enhances re-entrainment to light (Mieda et al., 2015Mieda M. Ono D. Hasegawa E. Okamoto H. Honma K. Honma S. Sakurai T. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.Neuron. 2015; 85: 1103-1116Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar), suggesting that cell-autonomous circadian rhythms in AVP neurons are required to regulate circadian behavioral rhythms (Mieda et al., 2015Mieda M. Ono D. Hasegawa E. Okamoto H. Honma K. Honma S. Sakurai T. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.Neuron. 2015; 85: 1103-1116Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar). Deletion of Bmal1 in AVP neurons also reduces the amplitude of circadian rhythms in the dorsal SCN (Mieda et al., 2015Mieda M. Ono D. Hasegawa E. Okamoto H. Honma K. Honma S. Sakurai T. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.Neuron. 2015; 85: 1103-1116Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar); however, it is unclear how robust these effects are or which cell types are specifically affected. Interestingly, Bmal1 deletion from the liver has no effect on Per2 rhythms, suggesting that external signals (coordinated by the SCN) can compensate for loss of a functioning clock in some tissues (Kornmann et al., 2007Kornmann B. Schaad O. Bujard H. Takahashi J.S. Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock.PLoS Biol. 2007; 5: e34Crossref PubMed Scopus (496) Google Scholar; Lamia et al., 2008Lamia K.A. Storch K.F. Weitz C.J. Physiological significance of a peripheral tissue circadian clock.Proc. Natl. Acad. Sci. USA. 2008; 105: 15172-15177Crossref PubMed Scopus (726) Google Scholar). In the current study, we sought to delineate cell-type-specific functions of the circadian clock in SCN neurons using our novel Color-Switch PER2::LUCIFERASE mouse line. Our results reveal surprising observations about the circadian function of VIP and AVP neurons in SCN network synchrony. To allow for cell-type-specific analysis of circadian rhythms, we generated Color-Switch mice with click beetle red (CBR) luciferase fused to the C terminus of PER2 that switches to click beetle green (CBG) luciferase fusion upon Cre-lox recombination (Gammon et al., 2006Gammon S.T. Leevy W.M. Gross S. Gokel G.W. Piwnica-Worms D. Spectral unmixing of multicolored bioluminescence emitted from heterogeneous biological sources.Anal. Chem. 2006; 78: 1520-1527Crossref PubMed Scopus (59) Google Scholar; Villalobos et al., 2010Villalobos V. Naik S. Bruinsma M. Dothager R.S. Pan M.H. Samrakandi M. Moss B. Elhammali A. Piwnica-Worms D. Dual-color click beetle luciferase heteroprotein fragment complementation assays.Chem. Biol. 2010; 17: 1018-1029Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar; Viviani et al., 2008Viviani V.R. Silva Neto A.J. Arnoldi F.G. Barbosa J.A. Ohmiya Y. The influence of the loop between residues 223–235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases.Photochem. Photobiol. 2008; 84: 138-144PubMed Google Scholar). The targeting construct used to create the Cre-dependent click beetle (CB) luciferase reporter mice is shown in Figure S1. CB luciferase was used for red/green discrimination, because firefly luciferase is pH sensitive and shifts to longer wavelengths so that red/green separation is compromised. The CB luciferases are also about 2×–5× brighter than firefly luciferase (Miloud et al., 2007Miloud T. Henrich C. Hämmerling G.J. Quantitative comparison of click beetle and firefly luciferases for in vivo bioluminescence imaging.J. Biomed. Opt. 2007; 12: 054018Crossref PubMed Scopus (38) Google Scholar). To visualize the red and green bioluminescence signals from PER2::CBR and PER2::CBG, we also developed a dual-color imaging device that is capable of separating and capturing dual-color bioluminescence signals concurrently on the same image-capture device. The bioluminescence signal from the sample was separated with a beam splitter into long wavelengths (>565 nm) and short wavelengths (<565 nm). The long- and short-wavelength signals were filtered with a long-pass filter (>625 nm) and a short-pass filter (<550 nm), respectively, to separate the green and red bioluminescence signals. The green- and red-channel images were then focused onto the right and left halves of a cooled charge-coupled device (CCD) camera detector so that the red and green channels could be collected simultaneously frame by frame (Figure 1A). We next crossed Color-Switch PER2::LUCIFERASE mice with VIP-ires-Cre (Taniguchi et al., 2011Taniguchi H. He M. Wu P. Kim S. Paik R. Sugino K. Kvitsiani D. Fu Y. Lu J. Lin Y. et al.A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex.Neuron. 2011; 71: 995-1013Abstract Full Text Full Text PDF PubMed Scopus (969) Google Scholar) or AVP-ires-Cre (Pei et al., 2014Pei H. Sutton A.K. Burnett K.H. Fuller P.M. Olson D.P. AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding.Mol. Metab. 2014; 3: 209-215Crossref PubMed Scopus (71) Google Scholar) mouse lines, and ex vivo cultures of SCN explants were prepared (Yamazaki and Takahashi, 2005Yamazaki S. Takahashi J.S. Real-time luminescence reporting of circadian gene expression in mammals.Methods Enzymol. 2005; 393: 288-301Crossref PubMed Scopus (136) Google Scholar). As expected, VIP cells with PER2::CBG expression were localized in the ventral/core region of the SCN close to the optic chiasm (Figure 1B; Video S1), whereas AVP cells were localized in the dorsal/shell region of the SCN (Figure 1C; Video S2). Heatmap representations of single-cell rhythms from VIP (Figure 1D) and AVP (Figure 1E) neurons show that circadian rhythmicity was coherent in SCN explants, similar to that seen previously in pan-SCN PER2::LUC recordings (Buhr et al., 2010Buhr E.D. Yoo S.H. Takahashi J.S. Temperature as a universal resetting cue for mammalian circadian oscillators.Science. 2010; 330: 379-385Crossref PubMed Scopus (537) Google Scholar; Ko et al., 2010Ko C.H. Yamada Y.R. Welsh D.K. Buhr E.D. Liu A.C. Zhang E.E. Ralph M.R. Kay S.A. Forger D.B. Takahashi J.S. Emergence of noise-induced oscillations in the central circadian pacemaker.PLoS Biol. 2010; 8: e1000513Crossref PubMed Scopus (140) Google Scholar; Liu et al., 2007Liu A.C. Welsh D.K. Ko C.H. Tran H.G. Zhang E.E. Priest A.A. Buhr E.D. Singer O. Meeker K. Verma I.M. et al.Intercellular coupling confers robustness against mutations in the SCN circadian clock network.Cell. 2007; 129: 605-616Abstract Full Text Full Text PDF PubMed Scopus (498) Google Scholar). Importantly, the SCN slice is not in steady state when the tissue slice is first prepared. Initially, the SCN slice reflects a state of the oscillator system that is similar to what it was previously in vivo. As documented in many studies, the relative phase coherence of SCN oscillators is regulated by photoperiod, and this can be seen subsequently in SCN slices as the coherence of phases of the population of cells in the SCN (Buijink et al., 2016Buijink M.R. Almog A. Wit C.B. Roethler O. Olde Engberink A.H. Meijer J.H. Garlaschelli D. Rohling J.H. Michel S. Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under Long Photoperiod.PLoS ONE. 2016; 11: e0168954Crossref PubMed Scopus (27) Google Scholar; Schaap et al., 2003Schaap J. Albus H. VanderLeest H.T. Eilers P.H. Détári L. Meijer J.H. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding.Proc. Natl. Acad. Sci. USA. 2003; 100: 15994-15999Crossref PubMed Scopus (166) Google Scholar; VanderLeest et al., 2007VanderLeest H.T. Houben T. Michel S. Deboer T. Albus H. Vansteensel M.J. Block G.D. Meijer J.H. Seasonal encoding by the circadian pacemaker of the SCN.Curr. Biol. 2007; 17: 468-473Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar). With time in vitro, the SCN slices relax to a new steady state with respect to mutual coupling of the population of oscillators. During this first week in culture, the phase relationships among SCN neurons gradually change, and SCN neurons can exhibit different period lengths as the slice goes from one state (from in vivo) to a new steady state (to in vitro). With our methods, we can directly measure these subtle period changes during this transition interval. eyJraWQiOiI4ZjUxYWNhY2IzYjhiNjNlNzFlYmIzYWFmYTU5NmZmYyIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiJkMjBlN2Q4NTJmNmM3OTdlODI5ODgyMzBhYzJlMDQ2YSIsImtpZCI6IjhmNTFhY2FjYjNiOGI2M2U3MWViYjNhYWZhNTk2ZmZjIiwiZXhwIjoxNjM1NDc0NTM1fQ.S5X4IkfEcLI7RXAcF_O53IZ-Y_l4ZtpFcyGAWlGX_6pEsGgfwQkvjMSQ6XYbKYrdkxP1CeL9UYb92DIiNhDSAOsrjRiTRH0DEQks2Sl3PabSHde-A80ofJ2APe-_2Ea1wiAOL8auT56-Ew65SE6eKS8q0YCiL8wbSmJXmSkuWtRuqE97f-r4Xmf74WOhnizl7y23piO1YvBo4NkSH3aOA1pgHNe6Z5KpQVNt9GhpOgUF4ryoj4rWV6FWKBjwLSfFxAktfQQQ4D-evmtNPThkDJtG_4KWrb2mh3ePIitwPlVYfASi9BXHzf2OedKQv_lKu8uLswxfWJOcTTZEQlJmpg Download .mp4 (1.29 MB) Help with .mp4 files Video S1. Dual-Color, Time-Lapse Imaging of a VIP-Cre SCN, Related to Figure 1 eyJraWQiOiI4ZjUxYWNhY2IzYjhiNjNlNzFlYmIzYWFmYTU5NmZmYyIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiI3MmE4ZDBkODA5YWY0YWEzNTZmNzU4NzVlNmFkMjc1NCIsImtpZCI6IjhmNTFhY2FjYjNiOGI2M2U3MWViYjNhYWZhNTk2ZmZjIiwiZXhwIjoxNjM1NDc0NTM1fQ.VVpQrn7L1BFJJ6fsKgJn8ArnmEKPKr3qjGCG94dnFZYYetqpEMD0s995CcrCQYYt5TkhUE4f1wRqeS4TgGd4QeJar4zZRg6B98RujPzOMwPH3WiuXo7-hMOig8KxujCt22JJGM14R_R6Qd77GAzLoDVAU2HOSgS6CivzjkzknEWtizsO0BMTbWE0PUX5Qw81LnklWtXDk7EGC5u3OqHS7FeoB5E1Dx7r0SnEQNoub9A7xtXfce4QzgkOQIsgMaFv_MPy5eFl4k7WWWL80frZ-HFm4BVQSB_0rYzgtZjuUpw8Bp7VAdbMCKsPuE43sohi2M3ygA4igSdzFw_x-L59Mw Download .mp4 (0.98 MB) Help with .mp4 files Video S2. Dual-Color, Time-Lapse Imaging of an AVP-Cre SCN, Related to Figure 1 To evaluate the periodicity of genetically identified single cells from dual-color imaging, bioluminescence time series were analyzed with a custom-made pipeline (Figure S2; see STAR Methods). VIP neurons had a delayed average phase and longer average single-cell period compared with non-VIP cells (Figure 1F; Figure S3). In contrast, AVP neurons had a shorter average single-cell period length but no average phase difference compared with non-AVP cells (Figure 1G; Figure S3). Because both VIP and AVP cell types used PER2::CBG rather than PER2::CBR, the red/green reporters cannot account for the average period differences seen between VIP and AVP SCN neurons. These results suggest that our new mouse line allows accurate measurement of circadian PER2::LUC rhythms from any genetically accessible cell type given an appropriate Cre driver line. As with the original PER2::LUC reporter mouse (Yoo et al., 2004Yoo S.H. Yamazaki S. Lowrey P.L. Shimomura K. Ko C.H. Buhr E.D. Siepka S.M. Hong H.K. Oh W.J. Yoo O.J. et al.PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues.Proc. Natl. Acad. Sci. USA. 2004; 101: 5339-5346Crossref PubMed Scopus (1553) Google Scholar), this conditional Color-Switch reporter mouse should become a valuable reagent in the field. The SCN is a neuronal network, and intercellular coupling mutually synchronizes the periods of individual cell-autonomous oscillators (Abel et al., 2016bAbel J.H. Meeker K. Granados-Fuentes D. St John P.C. Wang T.J. Bales B.B. Doyle 3rd, F.J. Herzog E.D. Petzold L.R. Functional network inference of the suprachiasmatic nucleus.Proc. Natl. Acad. Sci. USA. 2016; 113: 4512-4517Crossref PubMed Scopus (31) Google Scholar; Gonze et al., 2005Gonze D. Bernard S. Waltermann C. Kramer A. Herzel H. Spontaneous synchronization of coupled circadian oscillators.Biophys. J. 2005; 89: 120-129Abstract Full Text Full Text PDF PubMed Scopus (323) Google Scholar; Herzog, 2007Herzog E.D. Neurons and networks in daily rhythms.Nat. Rev. Neurosci. 2007; 8: 790-802Crossref PubMed Scopus (187) Google Scholar; Low-Zeddies and Takahashi, 2001Low-Zeddies S.S. Takahashi J.S. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior.Cell. 2001; 105: 25-42Abstract Full Text Full Text PDF PubMed Scopus (122) Google Scholar; Schmal et al., 2018Schmal C. Herzog E.D. Herzel H. Measuring Relative Coupling Strength in Circadian Systems.J. Biol. Rhythms. 2018; 33: 84-98Crossref PubMed Scopus (14) Google Scholar). Intercellular coupling of SCN neurons confers robustness on the network and can rescue cell-autonomous genetic defects observed in isolated SCN neurons (Ko et al., 2010Ko C.H. Yamada Y.R. Welsh D.K. Buhr E.D. Liu A.C. Zhang E.E. Ralph M.R. Kay S.A. Forger D.B. Takahashi J.S. Emergence of noise-induced oscillations in the central circadian pacemaker.PLoS Biol. 2010; 8: e1000513Crossref PubMed Scopus (140) Google Scholar; Liu et al., 2007Liu A.C. Welsh D.K. Ko C.H. Tran H.G. Zhang E.E. Priest A.A. Buhr E.D. Singer O. Meeker K. Verma I.M. et al.Intercellular coupling confers robustness against mutations in the SCN circadian clock network.Cell. 2007; 129: 605-616Abstract Full Text Full Text PDF PubMed Scopus (498) Google Scholar; Tokuda et al., 2015Tokuda I.T. Ono D. Ananthasubramaniam B. Honma S. Honma K. Herzel H. Coupling Controls the Synchrony of Clock Cells in Development and Knockouts.Biophys. J. 2015; 109: 2159-2170Abstract Full Text Full Text PDF PubMed Scopus (17) Google Scholar). To study the neuropeptide-specific roles of neurons within this network, we applied tetrodotoxin (TTX), a sodium ion channel blocker, to inhibit the firing of action potentials and thus disrupt the coupling of SCN neurons (Yamaguchi et al., 2003Yamaguchi S. Isejima H. Matsuo T. Okura R. Yagita K. Kobayashi M. Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus.Science. 2003; 302: 1408-1412Crossref PubMed Scopus (689) Google Scholar). Neuronal firing results in the release of AVP and VIP in the SCN (Mazuski et al., 2018Mazuski C. Abel J.H. Chen S.P. Hermanstyne T.O. Jones J.R. Simon T. Doyle 3rd, F.J. Herzog E.D. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons.Neuron. 2018; 99: 555-563Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar; Pennartz et al., 1998Pennartz C.M. Bos N.P. Jeu M.T. Geurtsen A.M. Mirmiran M. Sluiter A.A. Buijs R.M. Membrane properties and morphology of vasopressin neurons in slices of rat suprachiasmatic nucleus.J. Neurophysiol. 1998; 80: 2710-2717Crossref PubMed Scopus (27) Google Scholar); therefore, blocking neuronal firing via TTX prevents intercellular communication within the SCN. Washout of TTX reverses the decoupling of the network, resulting in restored synchrony and high-amplitude circadian rhythmicity (Abel et al., 2016bAbel J.H. Meeker K. Granados-Fuentes D. St John P.C. Wang T.J. Bales B.B. Doyle 3rd, F.J. Herzog E.D. Petzold L.R. Functional network inference of the suprachiasmatic nucleus.Proc. Natl. Acad. Sci. USA. 2016; 113: 4512-4517Crossref PubMed Scopus (31) Google Scholar; Yamaguchi et al., 2003Yamaguchi S. Isejima H. Matsuo T. Okura R. Yagita K. Kobayashi M. Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus.Science. 2003; 302: 1408-1412Crossref PubMed Scopus (689) Google Scholar). To examine the respective roles of VIP and AVP neurons in maintaining synchrony within the SCN network, we also compared the effects of TTX on VIP or AVP neurons in a Cre-only or Bmal1 conditional deletion genetic background. The VIP-Cre and AVP-Cre mouse lines were crossed to Color-Switch mice and a Cre-lox conditional Bmal1 knockout mouse line (Johnson et al., 2014Johnson B.P. Walisser J.A. Liu Y. Shen A.L. McDearmon E.L. Moran S.M. McIntosh B.E. Vollrath A.L. Schook A.C. Takahashi J.S. Bradfield C.A. Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase.Proc. Natl. Acad. Sci. USA. 2014; 111: 18757-18762Crossref PubMed Scopus (48) Google Scholar) to produce VIP-Cre; Bmal1fx/fx; Per2iLuc/iLuc (called VIP-Bmal1−/−) (Table S1), and AVP-Cre; Bmal1fx/fx; Per2iLuc/iLuc (called AVP-Bmal1−/−) (Table S1) mice. VIP-Cre and AVP-Cre lines were used as heterozygous drivers to mitigate potential hypomorphic expression of their peptide gene products. In these mice, cells with green bioluminescence signals also indicate the excision of Bmal1 and loss of cell-autonomous circadian function. We first compared TTX-mediated synchronization between VIP-Cre-labeled SCN and VIP-Bmal1−/− SCN, because VIP is known to play an important role in SCN synchrony (Aton et al., 2005Aton S.J. Colwell C.S. Harmar A.J. Waschek J. Herzog E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.Nat. Neurosci. 2005; 8: 476-483Crossref PubMed Scopus (552) Google Scholar). In both VIP-Cre and VIP-Bmal1−/−, individual cells exhibited high-amplitude oscillations with moderate damping. When 1 μM TTX was added, the amplitude of single cells and the overall SCN damped quickly and the phase coherence was disrupted (Figures 2A–2F; Figure S3), as seen previously (Abel et al., 2016bAbel J.H. Meeker K. Granados-Fuentes D. St John P.C. Wang T.J. Bales B.B. Doyle 3rd, F.J. Herzog E.D. Petzold L.R. Function
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以父之名完成签到,获得积分10
刚刚
刚刚
ding应助sdl采纳,获得10
1秒前
1秒前
1秒前
领导范儿应助安静严青采纳,获得10
1秒前
LKSkywalker完成签到,获得积分10
2秒前
纪靖雁发布了新的文献求助10
2秒前
guojingjing发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI5应助fantasy采纳,获得10
3秒前
小二郎应助温柔的曼梅采纳,获得10
4秒前
仁爱惮发布了新的文献求助10
4秒前
4秒前
宝贝完成签到,获得积分10
4秒前
5秒前
大意的柚子完成签到,获得积分10
5秒前
小蚂蚁发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
凡迪亚比完成签到,获得积分10
7秒前
Jenny完成签到,获得积分10
7秒前
8秒前
taro发布了新的文献求助10
8秒前
8秒前
科研通AI5应助读书的时候采纳,获得10
8秒前
毛毛雨发布了新的文献求助10
9秒前
YY88687321完成签到 ,获得积分10
9秒前
9秒前
阔达碧空发布了新的文献求助10
9秒前
10秒前
隐形曼青应助123采纳,获得30
10秒前
11秒前
木木三发布了新的文献求助10
12秒前
许愿非树完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4033438
求助须知:如何正确求助?哪些是违规求助? 3571972
关于积分的说明 11365764
捐赠科研通 3302169
什么是DOI,文献DOI怎么找? 1817979
邀请新用户注册赠送积分活动 891673
科研通“疑难数据库(出版商)”最低求助积分说明 814446