Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach

抗压强度 Boosting(机器学习) 计算机科学 人工神经网络 支持向量机 试验数据 机器学习 人工智能 模式识别(心理学) 材料科学 复合材料 程序设计语言
作者
De‐Cheng Feng,Zhentao Liu,Xiaodan Wang,Chen Yin,Jia-qi Chang,Dong-Fang Wei,Zhao Hua Jiang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:230: 117000-117000 被引量:354
标识
DOI:10.1016/j.conbuildmat.2019.117000
摘要

In this paper, an intelligent approach based on the machine learning technique is proposed for predicting the compressive strength of concrete. This approach employs the adaptive boosting algorithm to construct a strong learner by integrating several weak learners, which can find the mapping between the input data and output data. The weak learner whose predicting error is small will have a larger weight in the entire system, thus the overall accuracy of the strong learner will be enhanced. A total of 1030 sets of concrete compressive strength tests is collected to train and test the learners, in which the concrete mixture components (e.g., coarse/fine aggregates, cement, water, additive, etc.) and the curing time are set as the input data while the compressive strength value is set as the output data. The proposed approach is validated through a 10-fold cross validation method, and reaches an average accuracy of over 95% in sense of determination coefficient. In addition, a new dataset of 103 samples for concrete compressive strength is also adopted to demonstrate the generalization power of the proposed mode. The proposed approach is also compared to some other individual machine learning techniques that are already applied in this field, e.g., artificial neural network (ANN) and support vector machine (SVM), and shows superior advantages over these methods. Finally, the influence of some key factors in the adaptive boosting approach is also investigated, e.g., the amount of training data, the choice of weak learner, and the influence of the sensitivity and number of the input parameters. It is shown that using 80% of the total data for training can obtain acceptable prediction results and decision tree is the best choice for the weak learner in the boosting framework. Also, the importances of different input variables are obtained based on the sensitivity analysis results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ddddd完成签到,获得积分10
刚刚
锂为什么叫做锂完成签到,获得积分10
刚刚
凶狠的盛男完成签到 ,获得积分10
1秒前
生动谷蓝完成签到,获得积分10
1秒前
小蘑菇应助黑球采纳,获得10
4秒前
XIAO完成签到,获得积分10
5秒前
Flyzhang完成签到,获得积分10
5秒前
闪闪幼南完成签到,获得积分10
6秒前
圆月弯刀完成签到 ,获得积分10
6秒前
6秒前
feiCheung完成签到 ,获得积分10
6秒前
10秒前
CH发布了新的文献求助10
12秒前
单纯访枫完成签到 ,获得积分10
12秒前
张薇发布了新的文献求助20
14秒前
LEP完成签到,获得积分10
14秒前
dmr完成签到,获得积分10
15秒前
tangchao完成签到,获得积分10
15秒前
潇潇暮雨完成签到,获得积分10
16秒前
16秒前
曙光完成签到,获得积分10
17秒前
joycelin发布了新的文献求助30
17秒前
巾凡完成签到 ,获得积分10
17秒前
活力的妙芙完成签到,获得积分10
18秒前
yjy完成签到 ,获得积分10
18秒前
Gang完成签到,获得积分10
19秒前
20秒前
无私的朝雪完成签到 ,获得积分10
21秒前
Wang完成签到,获得积分10
24秒前
25秒前
昵称可以改吗完成签到,获得积分10
26秒前
吱吱发布了新的文献求助30
26秒前
Ning00000完成签到 ,获得积分10
27秒前
118QQ完成签到,获得积分10
27秒前
濮阳盼曼完成签到,获得积分10
28秒前
tg2024完成签到,获得积分10
28秒前
翊星完成签到,获得积分10
30秒前
joycelin完成签到,获得积分10
32秒前
舟行碧波上完成签到,获得积分10
34秒前
科研通AI2S应助秋迎夏采纳,获得10
34秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418387
捐赠科研通 2354494
什么是DOI,文献DOI怎么找? 1246139
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921