Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach

抗压强度 Boosting(机器学习) 计算机科学 人工神经网络 支持向量机 试验数据 机器学习 人工智能 模式识别(心理学) 材料科学 复合材料 程序设计语言
作者
De‐Cheng Feng,Zhentao Liu,Xiaodan Wang,Chen Yin,Jia-qi Chang,Dong-Fang Wei,Zhao Hua Jiang
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:230: 117000-117000 被引量:354
标识
DOI:10.1016/j.conbuildmat.2019.117000
摘要

In this paper, an intelligent approach based on the machine learning technique is proposed for predicting the compressive strength of concrete. This approach employs the adaptive boosting algorithm to construct a strong learner by integrating several weak learners, which can find the mapping between the input data and output data. The weak learner whose predicting error is small will have a larger weight in the entire system, thus the overall accuracy of the strong learner will be enhanced. A total of 1030 sets of concrete compressive strength tests is collected to train and test the learners, in which the concrete mixture components (e.g., coarse/fine aggregates, cement, water, additive, etc.) and the curing time are set as the input data while the compressive strength value is set as the output data. The proposed approach is validated through a 10-fold cross validation method, and reaches an average accuracy of over 95% in sense of determination coefficient. In addition, a new dataset of 103 samples for concrete compressive strength is also adopted to demonstrate the generalization power of the proposed mode. The proposed approach is also compared to some other individual machine learning techniques that are already applied in this field, e.g., artificial neural network (ANN) and support vector machine (SVM), and shows superior advantages over these methods. Finally, the influence of some key factors in the adaptive boosting approach is also investigated, e.g., the amount of training data, the choice of weak learner, and the influence of the sensitivity and number of the input parameters. It is shown that using 80% of the total data for training can obtain acceptable prediction results and decision tree is the best choice for the weak learner in the boosting framework. Also, the importances of different input variables are obtained based on the sensitivity analysis results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松黄豆发布了新的文献求助10
刚刚
fjy666完成签到,获得积分10
1秒前
2秒前
zzy完成签到 ,获得积分10
3秒前
嘻嘻完成签到,获得积分10
3秒前
iNk应助鞘皮采纳,获得10
4秒前
大个应助sapphire采纳,获得10
4秒前
大个应助喜乐采纳,获得30
4秒前
iNk应助早早采纳,获得10
6秒前
7秒前
思源应助轻松的冰巧采纳,获得10
7秒前
坦率雁卉完成签到,获得积分10
9秒前
9秒前
传奇3应助pica采纳,获得10
11秒前
12秒前
12秒前
14秒前
15秒前
莫茹完成签到 ,获得积分10
15秒前
空空伊完成签到 ,获得积分10
16秒前
17秒前
17秒前
kobiy完成签到 ,获得积分10
18秒前
雨田完成签到,获得积分10
18秒前
沐沐1003完成签到,获得积分10
19秒前
喜乐发布了新的文献求助30
19秒前
led完成签到,获得积分10
20秒前
洪亭完成签到 ,获得积分10
20秒前
猪猪hero应助孤独的柠檬采纳,获得10
20秒前
糖果屋发布了新的文献求助20
21秒前
bkagyin应助Taylor采纳,获得10
21秒前
杰森斯坦虎完成签到,获得积分10
22秒前
洁净的亦竹完成签到,获得积分10
22秒前
23秒前
蔡从安发布了新的文献求助10
23秒前
24秒前
潇洒迎夏发布了新的文献求助10
25秒前
111关闭了111文献求助
26秒前
丙烯酸树脂完成签到,获得积分10
30秒前
瘦瘦的迎南完成签到 ,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093