Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach

抗压强度 Boosting(机器学习) 计算机科学 人工神经网络 支持向量机 试验数据 机器学习 人工智能 模式识别(心理学) 材料科学 复合材料 程序设计语言
作者
De‐Cheng Feng,Zhentao Liu,Xiaodan Wang,Chen Yin,Jia-qi Chang,Dong-Fang Wei,Zhao Hua Jiang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:230: 117000-117000 被引量:354
标识
DOI:10.1016/j.conbuildmat.2019.117000
摘要

In this paper, an intelligent approach based on the machine learning technique is proposed for predicting the compressive strength of concrete. This approach employs the adaptive boosting algorithm to construct a strong learner by integrating several weak learners, which can find the mapping between the input data and output data. The weak learner whose predicting error is small will have a larger weight in the entire system, thus the overall accuracy of the strong learner will be enhanced. A total of 1030 sets of concrete compressive strength tests is collected to train and test the learners, in which the concrete mixture components (e.g., coarse/fine aggregates, cement, water, additive, etc.) and the curing time are set as the input data while the compressive strength value is set as the output data. The proposed approach is validated through a 10-fold cross validation method, and reaches an average accuracy of over 95% in sense of determination coefficient. In addition, a new dataset of 103 samples for concrete compressive strength is also adopted to demonstrate the generalization power of the proposed mode. The proposed approach is also compared to some other individual machine learning techniques that are already applied in this field, e.g., artificial neural network (ANN) and support vector machine (SVM), and shows superior advantages over these methods. Finally, the influence of some key factors in the adaptive boosting approach is also investigated, e.g., the amount of training data, the choice of weak learner, and the influence of the sensitivity and number of the input parameters. It is shown that using 80% of the total data for training can obtain acceptable prediction results and decision tree is the best choice for the weak learner in the boosting framework. Also, the importances of different input variables are obtained based on the sensitivity analysis results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助木棉采纳,获得10
刚刚
GGG发布了新的文献求助10
刚刚
zena92完成签到,获得积分10
1秒前
1秒前
听风发布了新的文献求助10
2秒前
一一发布了新的文献求助10
2秒前
CC完成签到,获得积分20
3秒前
4秒前
时生111完成签到 ,获得积分10
4秒前
kb发布了新的文献求助10
5秒前
dafwfwaf完成签到,获得积分20
5秒前
Snow完成签到 ,获得积分10
6秒前
6秒前
CC发布了新的文献求助10
6秒前
小苏打完成签到,获得积分10
7秒前
Xiaoxiao应助程琳采纳,获得10
7秒前
ycc完成签到 ,获得积分10
7秒前
畏寒的北完成签到,获得积分10
8秒前
爆米花应助单纯的雅香采纳,获得10
8秒前
俭朴的玉兰完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
adazbd发布了新的文献求助10
10秒前
Jenny应助木头人采纳,获得10
10秒前
ATAYA完成签到,获得积分10
11秒前
11秒前
畏寒的北发布了新的文献求助10
11秒前
11秒前
12秒前
地下室没有鬼完成签到 ,获得积分10
12秒前
whh123完成签到 ,获得积分10
12秒前
天天快乐应助空禅yew采纳,获得10
13秒前
在水一方应助开心采纳,获得10
14秒前
Akim应助王w采纳,获得10
14秒前
towerman发布了新的文献求助10
14秒前
畅快平蓝完成签到,获得积分10
14秒前
大棒槌发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808