自回归积分移动平均
计算机科学
人工神经网络
带宽(计算)
自回归模型
实时计算
无源光网络
计算机网络
循环神经网络
动态带宽分配
网络流量控制
时间序列
人工智能
机器学习
波分复用
光电子学
波长
计量经济学
经济
物理
网络数据包
作者
Ziyao Yang,Dezhi Zhang,Jian Tang
标识
DOI:10.1109/ogc50007.2020.9260441
摘要
PON(Passive Optical Network)traffic prediction can provide data base for port expansion and bandwidth dynamic adjustment, so as to simplify PON traffic operation and improve bandwidth utilization. In this paper, based on the LSTM(Long Short-Term Memory)neural network, the characteristic data is redesigned based on the periodic characteristics of the PON port traffic. Compared with ARIMA(Autoregressive Integrated Moving Average model)and the basic LSTM neural network, the prediction accuracy is significantly improved and the calculation time is reduced.
科研通智能强力驱动
Strongly Powered by AbleSci AI