Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study

医学 大学医院 中国 考试(生物学) 医学诊断 甲状腺结节 甲状腺癌 甲状腺 结核(地质) 放射科 医学物理学 普通外科 家庭医学 内科学 法学 古生物学 生物 政治学
作者
Sui Peng,Yihao Liu,Weiming Lv,Longzhong Liu,Qian Zhou,Hong Yang,Jie Ren,Guangjian Liu,Xiaodong Wang,Xuehua Zhang,Qiang Du,Fangxing Nie,Gao Huang,Yuchen Guo,Jie Li,Jinyu Liang,Shunro Matsumoto,Han Xiao,Ze-Long Liu,Fenghua Lai
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (4): e250-e259 被引量:248
标识
DOI:10.1016/s2589-7500(21)00041-8
摘要

BackgroundStrategies for integrating artificial intelligence (AI) into thyroid nodule management require additional development and testing. We developed a deep-learning AI model (ThyNet) to differentiate between malignant tumours and benign thyroid nodules and aimed to investigate how ThyNet could help radiologists improve diagnostic performance and avoid unnecessary fine needle aspiration.MethodsThyNet was developed and trained on 18 049 images of 8339 patients (training set) from two hospitals (the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, and Sun Yat-sen University Cancer Center, Guangzhou, China) and tested on 4305 images of 2775 patients (total test set) from seven hospitals (the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the Guangzhou Army General Hospital, Guangzhou, China; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the First Affiliated Hospital of Sun Yat-sen University; Sun Yat-sen University Cancer Center; and the First Affiliated Hospital of Guangxi Medical University, Nanning, China) in three stages. All nodules in the training and total test set were pathologically confirmed. The diagnostic performance of ThyNet was first compared with 12 radiologists (test set A); a ThyNet-assisted strategy, in which ThyNet assisted diagnoses made by radiologists, was developed to improve diagnostic performance of radiologists using images (test set B); the ThyNet assisted strategy was then tested in a real-world clinical setting (using images and videos; test set C). In a simulated scenario, the number of unnecessary fine needle aspirations avoided by ThyNet-assisted strategy was calculated.FindingsThe area under the receiver operating characteristic curve (AUROC) for accurate diagnosis of ThyNet (0·922 [95% CI 0·910–0·934]) was significantly higher than that of the radiologists (0·839 [0·834–0·844]; p<0·0001). Furthermore, ThyNet-assisted strategy improved the pooled AUROC of the radiologists from 0·837 (0·832–0·842) when diagnosing without ThyNet to 0·875 (0·871–0·880; p<0·0001) with ThyNet for reviewing images, and from 0·862 (0·851–0·872) to 0·873 (0·863–0·883; p<0·0001) in the clinical test, which used images and videos. In the simulated scenario, the number of fine needle aspirations decreased from 61·9% to 35·2% using the ThyNet-assisted strategy, while missed malignancy decreased from 18·9% to 17·0%.InterpretationThe ThyNet-assisted strategy can significantly improve the diagnostic performance of radiologists and help reduce unnecessary fine needle aspirations for thyroid nodules.FundingNational Natural Science Foundation of China and Guangzhou Science and Technology Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美青槐发布了新的文献求助10
1秒前
上官若男应助橙子采纳,获得30
2秒前
Han完成签到,获得积分10
2秒前
2秒前
2秒前
FZR发布了新的文献求助10
3秒前
kkkkkkk_发布了新的文献求助10
3秒前
无辜馒头应助傲娇问晴采纳,获得10
3秒前
4秒前
4秒前
xinyi完成签到,获得积分10
4秒前
5秒前
5秒前
重要纸飞机完成签到,获得积分10
5秒前
科研小垃圾完成签到,获得积分10
5秒前
5秒前
6秒前
Potter发布了新的文献求助10
6秒前
清爽电脑应助美好稚晴采纳,获得10
7秒前
JING发布了新的文献求助20
7秒前
难遇完成签到,获得积分20
7秒前
Cheng完成签到 ,获得积分10
8秒前
CAOHOU应助曲奇饼干采纳,获得10
8秒前
烂漫饼干应助甜美青槐采纳,获得10
8秒前
liuyifei完成签到,获得积分10
8秒前
欢呼的纹应助小白采纳,获得10
9秒前
Yongjian发布了新的文献求助10
9秒前
9秒前
王鹏发布了新的文献求助10
10秒前
李清水完成签到,获得积分10
10秒前
10秒前
10秒前
木木完成签到,获得积分10
11秒前
筱雨完成签到,获得积分10
11秒前
taozjju发布了新的文献求助10
12秒前
BYN发布了新的文献求助10
12秒前
小古完成签到,获得积分10
13秒前
脑洞疼应助chem采纳,获得30
13秒前
CodeCraft应助wyq采纳,获得10
14秒前
跳跳妈妈发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912195
求助须知:如何正确求助?哪些是违规求助? 3457447
关于积分的说明 10895782
捐赠科研通 3183854
什么是DOI,文献DOI怎么找? 1759880
邀请新用户注册赠送积分活动 851177
科研通“疑难数据库(出版商)”最低求助积分说明 792549