Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study

医学 大学医院 中国 考试(生物学) 医学诊断 甲状腺结节 甲状腺癌 甲状腺 结核(地质) 放射科 医学物理学 普通外科 家庭医学 内科学 法学 古生物学 生物 政治学
作者
Sui Peng,Yihao Liu,Weiming Lv,Longzhong Liu,Qian Zhou,Hong Yang,Jie Ren,Guangjian Liu,Xiaodong Wang,Xuehua Zhang,Qiang Du,Fangxing Nie,Gao Huang,Yuchen Guo,Jie Li,Jinyu Liang,Shunro Matsumoto,Han Xiao,Ze-Long Liu,Fenghua Lai
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (4): e250-e259 被引量:239
标识
DOI:10.1016/s2589-7500(21)00041-8
摘要

BackgroundStrategies for integrating artificial intelligence (AI) into thyroid nodule management require additional development and testing. We developed a deep-learning AI model (ThyNet) to differentiate between malignant tumours and benign thyroid nodules and aimed to investigate how ThyNet could help radiologists improve diagnostic performance and avoid unnecessary fine needle aspiration.MethodsThyNet was developed and trained on 18 049 images of 8339 patients (training set) from two hospitals (the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, and Sun Yat-sen University Cancer Center, Guangzhou, China) and tested on 4305 images of 2775 patients (total test set) from seven hospitals (the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the Guangzhou Army General Hospital, Guangzhou, China; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the First Affiliated Hospital of Sun Yat-sen University; Sun Yat-sen University Cancer Center; and the First Affiliated Hospital of Guangxi Medical University, Nanning, China) in three stages. All nodules in the training and total test set were pathologically confirmed. The diagnostic performance of ThyNet was first compared with 12 radiologists (test set A); a ThyNet-assisted strategy, in which ThyNet assisted diagnoses made by radiologists, was developed to improve diagnostic performance of radiologists using images (test set B); the ThyNet assisted strategy was then tested in a real-world clinical setting (using images and videos; test set C). In a simulated scenario, the number of unnecessary fine needle aspirations avoided by ThyNet-assisted strategy was calculated.FindingsThe area under the receiver operating characteristic curve (AUROC) for accurate diagnosis of ThyNet (0·922 [95% CI 0·910–0·934]) was significantly higher than that of the radiologists (0·839 [0·834–0·844]; p<0·0001). Furthermore, ThyNet-assisted strategy improved the pooled AUROC of the radiologists from 0·837 (0·832–0·842) when diagnosing without ThyNet to 0·875 (0·871–0·880; p<0·0001) with ThyNet for reviewing images, and from 0·862 (0·851–0·872) to 0·873 (0·863–0·883; p<0·0001) in the clinical test, which used images and videos. In the simulated scenario, the number of fine needle aspirations decreased from 61·9% to 35·2% using the ThyNet-assisted strategy, while missed malignancy decreased from 18·9% to 17·0%.InterpretationThe ThyNet-assisted strategy can significantly improve the diagnostic performance of radiologists and help reduce unnecessary fine needle aspirations for thyroid nodules.FundingNational Natural Science Foundation of China and Guangzhou Science and Technology Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七叶树完成签到,获得积分10
刚刚
bopi完成签到,获得积分10
刚刚
bc应助fane采纳,获得30
2秒前
田様应助CH采纳,获得10
5秒前
Owen应助邬函采纳,获得10
6秒前
7秒前
13秒前
天天快乐应助lei采纳,获得10
13秒前
yj91完成签到 ,获得积分10
14秒前
心若无敌便无敌完成签到,获得积分10
15秒前
科研通AI2S应助莉莉酱采纳,获得30
17秒前
科研通AI5应助kulolo采纳,获得10
18秒前
英俊的铭应助yangyog采纳,获得10
19秒前
syjjj完成签到,获得积分10
20秒前
橘子圭令完成签到,获得积分10
21秒前
HEAUBOOK给kyt的求助进行了留言
23秒前
执棋者发布了新的文献求助50
24秒前
25秒前
26秒前
simendl发布了新的文献求助20
28秒前
小马甲应助hyf567采纳,获得10
28秒前
YOUNG完成签到,获得积分20
30秒前
31秒前
XXXD发布了新的文献求助10
31秒前
lei发布了新的文献求助10
32秒前
sk夏冰发布了新的文献求助10
35秒前
临界完成签到,获得积分10
36秒前
36秒前
36秒前
39秒前
动漫大师发布了新的文献求助10
40秒前
kulolo发布了新的文献求助10
41秒前
大个应助白樱恋曲采纳,获得10
41秒前
冷眸完成签到 ,获得积分10
43秒前
Elige发布了新的文献求助10
45秒前
46秒前
sk夏冰完成签到,获得积分10
46秒前
傻傻的一刀完成签到 ,获得积分10
50秒前
拼搏的平凡完成签到,获得积分20
50秒前
慕青应助dnmd采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780599
求助须知:如何正确求助?哪些是违规求助? 3326097
关于积分的说明 10225760
捐赠科研通 3041214
什么是DOI,文献DOI怎么找? 1669236
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669