Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study

医学 大学医院 中国 考试(生物学) 医学诊断 甲状腺结节 甲状腺癌 甲状腺 结核(地质) 放射科 医学物理学 普通外科 家庭医学 内科学 古生物学 政治学 法学 生物
作者
Sui Peng,Yihao Liu,Weiming Lv,Longzhong Liu,Qian Zhou,Hong Yang,Jie Ren,Guangjian Liu,Xiaodong Wang,Xuehua Zhang,Qiang Du,Fangxing Nie,Gao Huang,Yuchen Guo,Jie Li,Jinyu Liang,Shunro Matsumoto,Han Xiao,Ze-Long Liu,Fenghua Lai
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (4): e250-e259 被引量:248
标识
DOI:10.1016/s2589-7500(21)00041-8
摘要

BackgroundStrategies for integrating artificial intelligence (AI) into thyroid nodule management require additional development and testing. We developed a deep-learning AI model (ThyNet) to differentiate between malignant tumours and benign thyroid nodules and aimed to investigate how ThyNet could help radiologists improve diagnostic performance and avoid unnecessary fine needle aspiration.MethodsThyNet was developed and trained on 18 049 images of 8339 patients (training set) from two hospitals (the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, and Sun Yat-sen University Cancer Center, Guangzhou, China) and tested on 4305 images of 2775 patients (total test set) from seven hospitals (the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the Guangzhou Army General Hospital, Guangzhou, China; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the First Affiliated Hospital of Sun Yat-sen University; Sun Yat-sen University Cancer Center; and the First Affiliated Hospital of Guangxi Medical University, Nanning, China) in three stages. All nodules in the training and total test set were pathologically confirmed. The diagnostic performance of ThyNet was first compared with 12 radiologists (test set A); a ThyNet-assisted strategy, in which ThyNet assisted diagnoses made by radiologists, was developed to improve diagnostic performance of radiologists using images (test set B); the ThyNet assisted strategy was then tested in a real-world clinical setting (using images and videos; test set C). In a simulated scenario, the number of unnecessary fine needle aspirations avoided by ThyNet-assisted strategy was calculated.FindingsThe area under the receiver operating characteristic curve (AUROC) for accurate diagnosis of ThyNet (0·922 [95% CI 0·910–0·934]) was significantly higher than that of the radiologists (0·839 [0·834–0·844]; p<0·0001). Furthermore, ThyNet-assisted strategy improved the pooled AUROC of the radiologists from 0·837 (0·832–0·842) when diagnosing without ThyNet to 0·875 (0·871–0·880; p<0·0001) with ThyNet for reviewing images, and from 0·862 (0·851–0·872) to 0·873 (0·863–0·883; p<0·0001) in the clinical test, which used images and videos. In the simulated scenario, the number of fine needle aspirations decreased from 61·9% to 35·2% using the ThyNet-assisted strategy, while missed malignancy decreased from 18·9% to 17·0%.InterpretationThe ThyNet-assisted strategy can significantly improve the diagnostic performance of radiologists and help reduce unnecessary fine needle aspirations for thyroid nodules.FundingNational Natural Science Foundation of China and Guangzhou Science and Technology Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜倾发布了新的文献求助10
刚刚
JB18CM发布了新的文献求助10
刚刚
打打应助负责的方盒采纳,获得10
1秒前
1秒前
乐乐应助张张采纳,获得10
3秒前
6秒前
Sholo完成签到 ,获得积分10
6秒前
6秒前
Hello应助於香之采纳,获得10
6秒前
7秒前
7秒前
pp完成签到,获得积分10
9秒前
TT发布了新的文献求助10
10秒前
乐乐应助火星上初柳采纳,获得10
10秒前
yhc发布了新的文献求助10
11秒前
12秒前
君子扑火发布了新的文献求助10
12秒前
13秒前
15秒前
16秒前
共享精神应助DrWang采纳,获得10
17秒前
cjn发布了新的文献求助10
18秒前
完美世界应助颜倾采纳,获得10
18秒前
cheesec发布了新的文献求助10
18秒前
李健的粉丝团团长应助kong采纳,获得10
18秒前
19秒前
顺顺顺顺完成签到 ,获得积分10
20秒前
乘风发布了新的文献求助10
21秒前
jvliebig完成签到 ,获得积分10
22秒前
mengzhonghunli完成签到,获得积分10
23秒前
俊逸如风发布了新的文献求助20
26秒前
28秒前
整齐夜安完成签到,获得积分10
28秒前
28秒前
30秒前
31秒前
Xiaoxiao应助gjx采纳,获得10
31秒前
Symphony发布了新的文献求助10
32秒前
DrWang发布了新的文献求助10
33秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
Mechanics of Composite Strengthening 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176440
求助须知:如何正确求助?哪些是违规求助? 3711698
关于积分的说明 11705252
捐赠科研通 3394595
什么是DOI,文献DOI怎么找? 1862389
邀请新用户注册赠送积分活动 921150
科研通“疑难数据库(出版商)”最低求助积分说明 833034