微流控
材料科学
纳米技术
墨水池
制作
浓度梯度
计算机科学
生化工程
工程类
医学
病理
复合材料
替代医学
作者
Mian Wang,Wanlu Li,Luis Santiago Mille,Terry Ching,Zeyu Luo,Guosheng Tang,Carlos Ezio Garciamendez,Ami Lesha,Michinao Hashimoto,Yu Shrike Zhang
标识
DOI:10.1002/adma.202107038
摘要
Recapitulation of complex tissues signifies a remarkable challenge and, to date, only a few approaches have emerged that can efficiently reconstruct necessary gradients in 3D constructs. This is true even though mimicry of these gradients is of great importance to establish the functionality of engineered tissues and devices. Here, a composable-gradient Digital Light Processing (DLP)-based (bio)printing system is developed, utilizing the unprecedented integration of a microfluidic mixer for the generation of either continual or discrete gradients of desired (bio)inks in real time. Notably, the precisely controlled gradients are composable on-the-fly by facilely by adjusting the (bio)ink flow ratios. In addition, this setup is designed in such a way that (bio)ink waste is minimized when exchanging the gradient (bio)inks, further enhancing this time- and (bio)ink-saving strategy. Various planar and 3D structures exhibiting continual gradients of materials, of cell densities, of growth factor concentrations, of hydrogel stiffness, and of porosities in horizontal and/or vertical direction, are exemplified. The composable fabrication of multifunctional gradients strongly supports the potential of the unique bioprinting system in numerous biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI