亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for diagnosing osteonecrosis of the femoral head based on magnetic resonance imaging

磁共振成像 接收机工作特性 医学 阶段(地层学) 股骨头 曲线下面积 基本事实 计算机科学 放射科 核医学 人工智能 外科 内科学 地质学 古生物学
作者
Peixu Wang,Xingyu Liu,Xu Jia,Tengqi Li,Wei Sun,Zirong Li,Fuqiang Gao,Lijun Shi,Zhizhuo Li,Xinjie Wu,Xin Xu,Xiaoyu Fan,Chang‐Jiu Li,Yiling Zhang,Yicheng An
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:208: 106229-106229 被引量:31
标识
DOI:10.1016/j.cmpb.2021.106229
摘要

• Early-stage ONFH can be difficult to detect owing to the lack of symptoms. • Magnetic resonance imaging is sufficiently sensitive to detect ONFH. • The deep learning model was the first model thant can detect early-stage ONFH lesions with less time compare to orthopaedists. Early-stage osteonecrosis of the femoral head (ONFH) can be difficult to detect because of a lack of symptoms. Magnetic resonance imaging (MRI) is sufficiently sensitive to detect ONFH; however, the diagnosis of ONFH requires experience and is time consuming. We developed a fully automatic deep learning model for detecting early-stage ONFH lesions on MRI. This was a single-center retrospective study. Between January 2016 and December 2019, 298 patients underwent MRI and were diagnosed with ONFH. Of these patients, 110 with early-stage ONFH were included. Using a 7:3 ratio, we randomly divided them into training and testing datasets. All 3640 segments were delineated as the ground truth definition. The diagnostic performance of our model was analyzed using the receiver operating characteristic curve with the area under the receiver operating characteristic curve (AUC) and Hausdorff distance (HD). Differences in the area between the prediction and ground truth definition were assessed using the Pearson correlation and Bland–Altman plot. Our model's AUC was 0.97 with a mean sensitivity of 0.95 (0.95, 0.96) and specificity of 0.97 (0.96, 0.97). Our model's prediction had similar results with the ground truth definition with an average HD of 1.491 and correlation coefficient (r) of 0.84. The bias of the Bland–Altman analyses was 1.4 px (-117.7–120.5 px). Our model could detect early-stage ONFH lesions in less time than the experts. However, future multicenter studies with larger data are required to further verify and improve our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老石完成签到 ,获得积分10
23秒前
ZYP完成签到,获得积分10
30秒前
545950563完成签到 ,获得积分10
35秒前
msn00完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
咚咚完成签到 ,获得积分10
1分钟前
JoeyJin完成签到,获得积分10
1分钟前
Yini应助虚拟的凡波采纳,获得30
1分钟前
Yini应助虚拟的凡波采纳,获得30
1分钟前
Yini应助虚拟的凡波采纳,获得30
1分钟前
Yini应助虚拟的凡波采纳,获得30
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
维生素西发布了新的文献求助20
1分钟前
赫若魔应助恒小雷采纳,获得10
2分钟前
赫若魔应助Wei采纳,获得10
2分钟前
共享精神应助维生素西采纳,获得10
2分钟前
恒小雷完成签到 ,获得积分20
2分钟前
mmyhn发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分0
2分钟前
葛怀锐完成签到 ,获得积分10
2分钟前
小奋青完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
hmhu完成签到,获得积分10
3分钟前
sfwrbh发布了新的文献求助10
3分钟前
hmhu发布了新的文献求助10
3分钟前
优秀棒棒糖完成签到 ,获得积分10
4分钟前
单薄咖啡豆完成签到 ,获得积分10
4分钟前
5分钟前
xurilaixi发布了新的文献求助10
5分钟前
5分钟前
5分钟前
烟花应助腼腆的馒头采纳,获得10
5分钟前
herococa应助科研通管家采纳,获得10
6分钟前
赘婿应助拼搏冬卉采纳,获得10
7分钟前
7分钟前
拼搏冬卉完成签到,获得积分10
7分钟前
拼搏冬卉发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Ricci Solitons in Dimensions 4 and Higher 470
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4779997
求助须知:如何正确求助?哪些是违规求助? 4109964
关于积分的说明 12713982
捐赠科研通 3832844
什么是DOI,文献DOI怎么找? 2113970
邀请新用户注册赠送积分活动 1137349
关于科研通互助平台的介绍 1022062