Lightweight convolutional neural network model for field wheat ear disease identification

卷积神经网络 计算机科学 特征(语言学) 残余物 人工智能 特征提取 模式识别(心理学) 块(置换群论) 过程(计算) 联营 卷积(计算机科学) 鉴定(生物学) 人工神经网络 算法 数学 植物 生物 操作系统 哲学 语言学 几何学
作者
Wenxia Bao,Xinghua Yang,Dong Liang,Gensheng Hu,Xianjun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:189: 106367-106367 被引量:105
标识
DOI:10.1016/j.compag.2021.106367
摘要

• A lightweight CNN model was designed to identify wheat ear diseases in the field. • An attention mechanism module was used to reduce the influence of complex backgrounds. • A feature fusion module was designed to reduce the damage to the features. • The designed CNN model has only 2.13 M parameters and achieved an accuracy of 94.1%. Manual diagnosis of crop diseases has high cost and low efficiency and has become increasingly unsuitable for the needs of modern agricultural production. This study designed a lightweight convolutional neural network (CNN) model called SimpleNet for the automatic identification of wheat ear diseases, such as glume blotch and scab, in natural scene images taken in the field. SimpleNet was constructed using convolution and inverted residual blocks. In this study, Convolutional Block Attention Module (CBAM), which combines spatial attention mechanism and channel attention mechanism, was introduced into inverted residual blocks to improve the representation ability of the model for disease features so that the model pays attention to important features, suppresses unnecessary features, and reduces the influence of complex backgrounds in the images. In addition, this study designed a feature fusion module to concatenate the down-sampled feature maps output by inverted residual blocks and the average pooling features of the feature maps that input inverted residual blocks to realize the fusion between features of different depths to reduce the loss of the detailed features of wheat ear diseases caused by the networks in the down-sampling process and solve the disappearance of disease features in the process of image feature extraction. Experimental results show that the proposed SimpleNet model achieved an identification accuracy of 94.1% on the test data set, which is higher than that of classic CNN models, such as VGG16, ResNet50, and AlexNet, and lightweight CNN models, such as MobileNet V1, V2, and V3. SimpleNet has only 2.13 M parameters, which is less than those of MobileNet V1, V2, and V3-Large. The designed model can be used for the automatic identification of wheat ear diseases on the mobile terminal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
anan完成签到,获得积分10
1秒前
1秒前
Jeanne发布了新的文献求助10
1秒前
陈泽宇发布了新的文献求助10
1秒前
Tian发布了新的文献求助10
1秒前
昏睡的山柳完成签到 ,获得积分10
2秒前
现代雪晴完成签到,获得积分10
2秒前
3秒前
Raisin完成签到 ,获得积分10
3秒前
吃饭饭发布了新的文献求助10
3秒前
hhc完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
星辰大海应助Linyi采纳,获得10
4秒前
哈桑士完成签到 ,获得积分10
4秒前
负责玉米发布了新的文献求助10
5秒前
hdd发布了新的文献求助10
7秒前
7秒前
英俊的铭应助xdc采纳,获得10
7秒前
泡泡发布了新的文献求助10
7秒前
123456发布了新的文献求助10
7秒前
8秒前
8秒前
胖咕噜完成签到,获得积分10
8秒前
刘刘刘完成签到,获得积分10
9秒前
岩浆果冻完成签到,获得积分10
9秒前
10秒前
10秒前
噜啦啦发布了新的文献求助10
11秒前
11秒前
高贵紫丝发布了新的文献求助10
12秒前
易安发布了新的文献求助20
12秒前
桐桐应助vv采纳,获得10
13秒前
acuter发布了新的文献求助10
13秒前
淋湿巴黎完成签到,获得积分10
15秒前
酷波er应助阿景采纳,获得10
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
请注意只有同济大学本校可以下载,求助同济大学博士学位论文,作者:王腾锐,导师:罗巍, 220
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831882
求助须知:如何正确求助?哪些是违规求助? 3374030
关于积分的说明 10483332
捐赠科研通 3093959
什么是DOI,文献DOI怎么找? 1703241
邀请新用户注册赠送积分活动 819322
科研通“疑难数据库(出版商)”最低求助积分说明 771423