Application of Ultrasound Images Texture Analysis for the Estimation of Intramuscular Fat Content in the Longissimus Thoracis Muscle of Beef Cattle after Slaughter: A Methodological Study

胸最长肌 肌内脂肪 线性判别分析 超声波 数学 肉牛 纹理(宇宙学) 动物科学 温柔 统计 医学 生物 计算机科学 人工智能 图像(数学) 放射科
作者
Giorgia Fabbri,Matteo Gianesella,Luigi Gallo,Massimo Morgante,Barbara Contiero,Michele Muraro,Matteo Boso,Enrico Fiore
出处
期刊:Animals [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 1117-1117 被引量:9
标识
DOI:10.3390/ani11041117
摘要

Intramuscular fat (IMF) is a major trait in the evaluation of beef meat, but its determination is subjective and inconsistent and still relies on visual inspection. This research objective was a method to predict IMF% from beef meat using ultrasound (US) imaging texture analysis. US images were performed on the longissimus thoracis muscle of 27 Charolaise heifers. Cuts from the 12th to 13th ribs were scanned. The lipid content of the muscle samples was determined with the petrol ether (Randall) extraction method. A stepwise linear discriminant analysis was used to screen US texture parameters. IMF% measured by chemical extraction (IMFqa) was the dependent variable and the results of the texture analysis were the explanatory variables. The model highlighted seven parameters, as a predictive and a multiple regression equation was created. Prediction of IMF content (IMFpred) was then validated using IMFqa as ground truth. Determination coefficient between IMFqa and IMFpred was R2 = 0.76, while the ROC analysis showing a sensitivity of 88% and a specificity of 90%. Bland-Altman plot upper and lower limit were +1.34 and −1.42, respectively (±1.96 SD), with a mean of −0.04. The results from the present study therefore suggest that prediction of IMF content in muscle mass by US texture analysis is possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syangZ完成签到,获得积分10
刚刚
虚幻安容完成签到,获得积分10
1秒前
香蕉觅云应助哈哈采纳,获得10
4秒前
jjjjz发布了新的文献求助10
4秒前
祯果粒发布了新的文献求助10
4秒前
小谷完成签到 ,获得积分20
4秒前
荔枝多酚完成签到,获得积分10
4秒前
Beebee24完成签到,获得积分10
5秒前
SSS完成签到,获得积分10
5秒前
5秒前
欢呼冬瓜完成签到,获得积分10
5秒前
6秒前
JamesPei应助fhl采纳,获得10
6秒前
syangZ完成签到,获得积分10
8秒前
8秒前
赘婿应助pharmstudent采纳,获得10
8秒前
YIQI完成签到,获得积分10
10秒前
善学以致用应助11111采纳,获得30
10秒前
量子星尘发布了新的文献求助10
11秒前
kd1412发布了新的文献求助10
12秒前
挖井的人完成签到,获得积分10
12秒前
万能的小叮当完成签到,获得积分0
13秒前
13秒前
14秒前
15秒前
草拟大坝完成签到 ,获得积分0
15秒前
应如是发布了新的文献求助10
16秒前
16秒前
坚定的板凳完成签到 ,获得积分20
17秒前
17秒前
叫我学霸男神裴完成签到,获得积分10
17秒前
18秒前
Dsivan应助务实凡灵采纳,获得10
19秒前
19秒前
huyuan发布了新的文献求助10
20秒前
20秒前
23秒前
热心的珍完成签到,获得积分10
24秒前
25秒前
soar完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866665
求助须知:如何正确求助?哪些是违规求助? 3409123
关于积分的说明 10661543
捐赠科研通 3133174
什么是DOI,文献DOI怎么找? 1728053
邀请新用户注册赠送积分活动 832678
科研通“疑难数据库(出版商)”最低求助积分说明 780381