PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation

异常检测 计算机科学 人工智能 离群值 分割 正规化(语言学) 机器学习 特征(语言学) 深度学习 异常(物理) 提前停车 模式识别(心理学) 学习迁移 特征工程 特征提取 人工神经网络 物理 哲学 语言学 凝聚态物理
作者
Tal Reiss,Niv Cohen,Liron Bergman,Yedid Hoshen
标识
DOI:10.1109/cvpr46437.2021.00283
摘要

Anomaly detection methods require high-quality features. In recent years, the anomaly detection community has attempted to obtain better features using advances in deep self-supervised feature learning. Surprisingly, a very promising direction, using pre-trained deep features, has been mostly overlooked. In this paper, we first empirically establish the perhaps expected, but unreported result, that combining pre-trained features with simple anomaly detection and segmentation methods convincingly outperforms, much more complex, state-of-the-art methods.In order to obtain further performance gains in anomaly detection, we adapt pre-trained features to the target distribution. Although transfer learning methods are well established in multi-class classification problems, the one-class classification (OCC) setting is not as well explored. It turns out that naive adaptation methods, which typically work well in supervised learning, often result in catastrophic collapse (feature deterioration) and reduce performance in OCC settings. A popular OCC method, DeepSVDD, advocates using specialized architectures, but this limits the adaptation performance gain. We propose two methods for combating collapse: i) a variant of early stopping that dynamically learns the stopping iteration ii) elastic regularization inspired by continual learning. Our method, PANDA, outperforms the state-of-the-art in the OCC, outlier exposure and anomaly segmentation settings by large margins 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自渡完成签到 ,获得积分10
1秒前
memedaaaah发布了新的文献求助10
2秒前
11211发布了新的文献求助10
3秒前
syh完成签到,获得积分10
3秒前
赘婿应助发发发采纳,获得10
3秒前
4秒前
苏苏发布了新的文献求助10
4秒前
xcx完成签到,获得积分10
4秒前
十一完成签到,获得积分10
4秒前
4秒前
领导范儿应助曹操的曹采纳,获得10
5秒前
5秒前
花楸树发布了新的文献求助10
5秒前
6秒前
yiliu0111487完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
猪猪侠发布了新的文献求助10
9秒前
涂文波完成签到,获得积分10
9秒前
10秒前
okkk发布了新的文献求助10
10秒前
cherry bomb完成签到,获得积分10
10秒前
10秒前
10秒前
中科院化学完成签到,获得积分10
11秒前
英姑应助LWJ采纳,获得10
11秒前
斯文败类应助伊森采纳,获得10
12秒前
12秒前
kele完成签到,获得积分10
12秒前
科研通AI6应助游云采纳,获得10
12秒前
旺仔完成签到,获得积分10
12秒前
GTY发布了新的文献求助50
13秒前
情怀应助苏楠采纳,获得30
13秒前
lllll发布了新的文献求助10
14秒前
14秒前
川流发布了新的文献求助10
16秒前
16秒前
我就是KKKK发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Washback of the College Entrance English Exam on student perceptions of learning in a Chinese rural city 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564343
求助须知:如何正确求助?哪些是违规求助? 3988523
关于积分的说明 12350320
捐赠科研通 3659681
什么是DOI,文献DOI怎么找? 2016690
邀请新用户注册赠送积分活动 1051136
科研通“疑难数据库(出版商)”最低求助积分说明 938940