Model Predictive Control Using Artificial Neural Network for Power Converters

模型预测控制 人工神经网络 计算机科学 转换器 控制器(灌溉) 现场可编程门阵列 稳健性(进化) 控制工程 控制理论(社会学) 工程类 人工智能 控制(管理) 嵌入式系统 电压 生物化学 生物 基因 电气工程 化学 农学
作者
Daming Wang,Z. John Shen,Xin Yin,Sai Tang,Xifei Liu,Chao Zhang,Jun Wang,José Rodríguez,Margarita Norambuena
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 3689-3699 被引量:175
标识
DOI:10.1109/tie.2021.3076721
摘要

There has been an increasing interest in using model predictive control (MPC) for power electronic applications. However, the exponential increase in computational complexity and demand of computing resources hinders the practical adoption of this highly promising control technique. In this article, a new MPC approach using an artificial neural network (termed ANN-MPC) is proposed to overcome these barriers. A power converter with a virtual MPC controller is first designed and operated under a circuit simulation or power hardware-in-the-loop simulation environment. An artificial neural network (ANN) is then trained offline with the input and output data of the virtual MPC controller. Next, an actual FPGA-based MPC controller is designed using the trained ANN instead of relying on heavy-duty mathematical computation to control the actual operation of the power converter in real time. The ANN-MPC approach can significantly reduce the computing need and allow the use of more accurate high-order system models due to the simple mathematical expression of ANN. Furthermore, the ANN-MPC approach can retain the robustness for system parameter uncertainties by flexibly setting the input elements. The basic concept, ANN structure, offline training method, and online operation of ANN-MPC are described in detail. The computing resource requirement of the ANN-MPC and conventional MPC are analyzed and compared. The ANN-MPC concept is validated by both simulation and experimental results on two kW-class flying capacitor multilevel converters. It is demonstrated that the FPGA-based ANN-MPC controller can significantly reduce the FPGA resource requirement (e.g., 2.11 times fewer slice LUTs and 2.06 times fewer DSPs) while offering a control performance same as the conventional MPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助邹坤采纳,获得10
1秒前
Wang完成签到,获得积分20
1秒前
Akim应助谢昊宸采纳,获得10
2秒前
天天快乐应助@Zhang采纳,获得10
3秒前
小鱼完成签到,获得积分10
5秒前
明亮的老四完成签到 ,获得积分10
6秒前
单纯念寒完成签到,获得积分10
8秒前
8秒前
彩色布条发布了新的文献求助10
9秒前
12秒前
桐桐应助贪玩果汁采纳,获得10
14秒前
zhoumomomo完成签到,获得积分10
14秒前
14秒前
复杂的凝冬完成签到,获得积分10
15秒前
15秒前
悦耳雪巧发布了新的文献求助10
15秒前
17秒前
@Zhang完成签到,获得积分10
18秒前
LJL完成签到 ,获得积分10
18秒前
小博发布了新的文献求助10
18秒前
joey2024完成签到,获得积分20
19秒前
cmy发布了新的文献求助10
19秒前
ding应助upupup采纳,获得10
19秒前
小石头完成签到,获得积分10
20秒前
www完成签到 ,获得积分0
20秒前
20秒前
Owen应助科研通管家采纳,获得10
21秒前
呵呵应助科研通管家采纳,获得10
21秒前
21秒前
mini发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
@Zhang发布了新的文献求助10
21秒前
wanci应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
彩色布条完成签到,获得积分10
21秒前
大个应助科研通管家采纳,获得10
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379091
求助须知:如何正确求助?哪些是违规求助? 4503505
关于积分的说明 14015967
捐赠科研通 4412216
什么是DOI,文献DOI怎么找? 2423735
邀请新用户注册赠送积分活动 1416630
关于科研通互助平台的介绍 1394129