已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up

计算机科学 变压器 判别式 高保真 人工智能 网格 建筑 瓶颈 鉴别器 卷积神经网络 计算机工程 模式识别(心理学) 电气工程 探测器 嵌入式系统 电压 工程类 艺术 视觉艺术 电信 数学 几何学
作者
Yifan Jiang,Shiyu Chang,Zhangyang Wang
出处
期刊:Neural Information Processing Systems 卷期号:34 被引量:1
链接
摘要

The recent explosive interest on transformers has suggested their potential to become powerful ``universal models for computer vision tasks, such as classification, detection, and segmentation. While those attempts mainly study the discriminative models, we explore transformers on some more notoriously difficult vision tasks, e.g., generative adversarial networks (GANs). Our goal is to conduct the first pilot study in building a GAN completely free of convolutions, using only pure transformer-based architectures. Our vanilla GAN architecture, dubbed TransGAN, consists of a memory-friendly transformer-based generator that progressively increases feature resolution, and correspondingly a multi-scale discriminator to capture simultaneously semantic contexts and low-level textures. On top of them, we introduce the new module of grid self-attention for alleviating the memory bottleneck further, in order to scale up TransGAN to high-resolution generation. We also develop a unique training recipe including a series of techniques that can mitigate the training instability issues of TransGAN, such as data augmentation, modified normalization, and relative position encoding. Our best architecture achieves highly competitive performance compared to current state-of-the-art GANs using convolutional backbones. Specifically, TransGAN sets new state-of-the-art inception score of 10.43 and FID of 18.28 on STL-10, outperforming StyleGAN-V2. When it comes to higher-resolution (e.g. 256 x 256) generation tasks, such as on CelebA-HQ and LSUN-Church, TransGAN continues to produce diverse visual examples with high fidelity and impressive texture details. In addition, we dive deep into the transformer-based generation models to understand how their behaviors differ from convolutional ones, by visualizing training dynamics. The code is available at this https URL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉心糖发布了新的文献求助200
2秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
maxi完成签到,获得积分10
4秒前
华仔应助协和小飞龙采纳,获得10
5秒前
feifei完成签到,获得积分10
6秒前
9秒前
9秒前
11秒前
maxi发布了新的文献求助10
14秒前
怕黑明雪完成签到 ,获得积分10
15秒前
思源应助光盘行动采纳,获得10
16秒前
珩溢发布了新的文献求助10
16秒前
北望完成签到,获得积分10
19秒前
调皮黑猫应助zyy采纳,获得50
19秒前
21秒前
蒙蒙完成签到 ,获得积分10
21秒前
共享精神应助maxi采纳,获得10
22秒前
北极星发布了新的文献求助30
25秒前
26秒前
科研通AI5应助LJC采纳,获得30
26秒前
chenzhuod发布了新的文献求助10
31秒前
34秒前
银河打工人应助江小霜采纳,获得10
37秒前
幕山白发布了新的文献求助10
38秒前
38秒前
41秒前
腼腆的初兰完成签到 ,获得积分20
43秒前
44秒前
47秒前
不要加糖发布了新的文献求助10
47秒前
与你无关完成签到,获得积分10
47秒前
47秒前
ocean发布了新的文献求助10
48秒前
nenoaowu发布了新的文献求助10
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436