A systematic review of personal thermal comfort models

热舒适性 计算机科学 领域(数学) 过程(计算) 建筑工程 可穿戴计算机 骨料(复合) 预测建模 数据科学 工程类 机器学习 物理 嵌入式系统 操作系统 复合材料 热力学 材料科学 纯数学 数学
作者
Larissa Arakawa Martins,Veronica Soebarto,Terence Williamson
出处
期刊:Building and Environment [Elsevier]
卷期号:207: 108502-108502 被引量:106
标识
DOI:10.1016/j.buildenv.2021.108502
摘要

Personal comfort models have shown to predict specific thermal comfort requirements more accurately than aggregate models, increasing occupant acceptability and associated energy benefits in both shared and single-occupant built environment. Although advances in the field of personal thermal comfort models are undeniable, there is still a lack of thorough and critical reviews of the current state of research in this field, especially considering the details of the predictive modeling process involved. This study has systematically reviewed 37 papers from over 100 academic publications on personal comfort models from the last two decades, and examined: (1) the data collection approach and dataset size, (2) number and type of participants involved, (3) climate, seasons and type of building involved, (4) model input and output variables, (5) modeling algorithm used, (6) performance indicator used, and (7) model final application. The review has identified a lack of diversity in building types, climates zones, seasons and participants involved in developing personal comfort models. It has also highlighted a lack of a unified and systematic framework for modeling development and evaluation, which currently hinders comparisons between studies. With most of the studies using machine learning techniques, the review has pointed to the challenges of “black box” models in the field. Finally, the review has indicated that personal input features using physiological sensing technologies can be further explored, especially considering the rapid advances seen today in wearable sensor technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Auroar发布了新的文献求助10
1秒前
可爱的函函应助Li采纳,获得10
1秒前
称心书蝶完成签到 ,获得积分10
1秒前
1秒前
Logan完成签到,获得积分10
2秒前
学渣完成签到 ,获得积分10
2秒前
smottom应助淡淡的忆彤采纳,获得10
2秒前
曾祥完成签到,获得积分10
3秒前
3秒前
4秒前
元子发布了新的文献求助10
4秒前
4秒前
远离电刀完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
8秒前
璿_发布了新的文献求助10
8秒前
佳妹儿发布了新的文献求助10
8秒前
坚定凝安完成签到,获得积分10
9秒前
WL发布了新的文献求助10
10秒前
10秒前
10秒前
zmj完成签到,获得积分10
10秒前
丘比特应助话话公子采纳,获得10
12秒前
13秒前
13秒前
xwm发布了新的文献求助30
13秒前
科研通AI6.1应助乐观热狗采纳,获得30
14秒前
无情的傲玉完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
陈乙酮发布了新的文献求助10
17秒前
可爱的函函应助张宇宁采纳,获得10
17秒前
璿_完成签到,获得积分10
18秒前
小棉背心发布了新的文献求助10
18秒前
充电宝应助小巧的聪展采纳,获得10
18秒前
和谐的小小完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5819266
求助须知:如何正确求助?哪些是违规求助? 5959116
关于积分的说明 15552228
捐赠科研通 4941163
什么是DOI,文献DOI怎么找? 2661365
邀请新用户注册赠送积分活动 1607658
关于科研通互助平台的介绍 1562627