Accurate bandgap predictions of solids assisted by machine learning

混合功能 密度泛函理论 均方误差 带隙 材料科学 生物系统 分类器(UML) 计算机科学 机器学习 人工智能 统计 数学 物理 光电子学 量子力学 生物
作者
Tao Wang,Xiaoxing Tan,Yadong Wei,Hao Jin
出处
期刊:Materials today communications [Elsevier]
卷期号:29: 102932-102932 被引量:39
标识
DOI:10.1016/j.mtcomm.2021.102932
摘要

The bandgap of the material is a primary property, which affects their performance and applications. Recently, with the emergence of high-throughput simulations, various materials databases are developed based on the density functional theory (DFT). However, for existing databases, the bandgaps are often underestimated since the exchange-correlation functional is treated by the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerh (PBE) approach during the DFT calculations. To better describe the bandgaps, more accurate approach should be employed, such as Heyd-Scuseria-Ernzerh (HSE) hybrid functional. However, this method is extremely time-consuming, which limits its applications. In this work, we employ the machine learning (ML) approach to predict the bandgaps of solids at the HSE level. We first develop a classifier model to identify nonmetals from the database, which shows excellent performance with the area under curve (AUC) up to 0.99. To predict the bandgaps of nonmetals, three ML models are trained and tested based on the selection of different features. These models can accurately predict the HSE bandgaps of solids, with the cross-validation score of 96% and root mean square error (RMSE) of 0.28 eV. Moreover, we apply these ML models to predict the bandgaps from Materials Project database at the HSE level, which contain 126324 inorganic compounds. These data are fully accessible from our newly released code for further study. Thus, our work not only provides an efficient approach to accurately predict the bandgaps of solids, but also accelerates the discovery and development of functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
定西完成签到,获得积分10
3秒前
真的不想干活了完成签到,获得积分10
4秒前
浮游应助明亮的夜天采纳,获得10
6秒前
Parsec发布了新的文献求助10
7秒前
小黑黑发布了新的文献求助10
7秒前
清秀的早晨完成签到,获得积分10
14秒前
paulmichael完成签到,获得积分10
14秒前
16秒前
16秒前
深情丸子完成签到,获得积分10
17秒前
Daodao完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
深情丸子发布了新的文献求助10
21秒前
22秒前
风趣绮烟发布了新的文献求助10
23秒前
Daodao发布了新的文献求助10
23秒前
27秒前
南京喵科大学完成签到,获得积分10
28秒前
丘比特应助简绮采纳,获得10
29秒前
厚朴应助蓝莓西西果冻采纳,获得10
30秒前
大模型应助风趣绮烟采纳,获得100
36秒前
jojo完成签到 ,获得积分10
38秒前
39秒前
俊逸的问薇完成签到 ,获得积分10
42秒前
48秒前
50秒前
独特的蛋挞完成签到,获得积分10
51秒前
学术laji发布了新的文献求助10
53秒前
简绮发布了新的文献求助10
56秒前
1分钟前
青春完成签到,获得积分10
1分钟前
大芳儿发布了新的文献求助10
1分钟前
青春发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
RoboSAMA发布了新的文献求助20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555