A two-stage location-sensitive and user preference-aware recommendation system

计算机科学 推荐系统 协同过滤 云计算 构造(python库) 质量(理念) 订单(交换) 模糊逻辑 聚类分析 基于位置的服务 偏爱 数据挖掘 人工智能 机器学习 哲学 程序设计语言 微观经济学 经济 操作系统 认识论 电信 财务
作者
Neda Mohammadi,Abbas Rasoolzadegan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:191: 116188-116188 被引量:8
标识
DOI:10.1016/j.eswa.2021.116188
摘要

Nowadays, cloud customers use cloud services increasingly to satisfy their demands. Usually, a significant number of customers are immature and inexpert and cannot express their needs accurately and numerically. They usually express their needs verbally and in the form of linguistic terms. On the other hand, the experienced customers express their needs numerically and accurately. In this situation, a recommendation system can be considered as one of the most useful ideas to support all type of customers. However, current recommendation systems (e.g., collaborative filtering based recommendations) meet customer requests that are accurately and numerically expressed. To support all types of customers, the construction of a strong recommendation system to analysis the demands expressed by customers (experienced and inexperienced) and to recommend suitable services is vital. As another important matter, cloud customers and services have been geographically distributed. Identifying the location of customers and services has a significant effect on the quality of services offered to customers. Therefore, the recommendation system should consider the location of customers and services in order to provide better services. In this paper, we introduce an efficient method to construct a powerful recommendation system which can provide suitable services considering the preferences of the customer and their location. The proposed recommendation system comprises two algorithms. The first algorithm is a fuzzy clustering algorithm, named FCA, that can well classify the location of customers and services. The second algorithm is an iterative adaptive neural-fuzzy algorithm, named IANFRA, which receives the preferences of the customer along with their location and identifies suitable services based on the locations clustered by FCA and the demands of customers (experienced and inexperienced). Finally, the feasibility of the proposed method has validated in terms of accuracy and scalability through conducting extensive experiments on a real distributed service quality dataset WS-DREAM. The evaluation results illustrate that both the service recommendation accuracy in the prediction of quality of services and the scalability, when the volume of the dataset is huge, have been improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
AWEI完成签到,获得积分10
刚刚
科研通AI6.1应助忘语采纳,获得10
1秒前
cc2004bj应助张康采纳,获得50
1秒前
Shelly发布了新的文献求助20
1秒前
画画发布了新的文献求助10
2秒前
2秒前
Ava应助书南采纳,获得10
2秒前
深情安青应助xxx采纳,获得10
3秒前
大大发布了新的文献求助10
3秒前
5秒前
welbeck完成签到,获得积分10
7秒前
7秒前
NONO完成签到,获得积分10
7秒前
8秒前
画画完成签到,获得积分10
9秒前
9秒前
Jasper应助鲜艳的冰夏采纳,获得10
10秒前
11秒前
思源应助silvia-z采纳,获得10
11秒前
dfgrtbddffh发布了新的文献求助10
12秒前
淡淡寻菡完成签到 ,获得积分10
13秒前
14秒前
14秒前
三毛完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
qhy发布了新的文献求助20
16秒前
16秒前
1234完成签到,获得积分20
18秒前
19秒前
nightmoonsun完成签到,获得积分10
19秒前
沉静篮球发布了新的文献求助10
19秒前
JenniferW发布了新的文献求助10
20秒前
21秒前
赵世鹏完成签到,获得积分10
21秒前
23秒前
23秒前
小黄人应助奶油梦想家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5818640
求助须知:如何正确求助?哪些是违规求助? 5954945
关于积分的说明 15550139
捐赠科研通 4940513
什么是DOI,文献DOI怎么找? 2661027
邀请新用户注册赠送积分活动 1607357
关于科研通互助平台的介绍 1562311